Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b362e71a
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b362e71a
编写于
8月 01, 2018
作者:
G
guochaorong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support ce for language_model
上级
53937db0
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
119 addition
and
30 deletion
+119
-30
fluid/language_model/.run_ce.sh
fluid/language_model/.run_ce.sh
+14
-0
fluid/language_model/_ce.py
fluid/language_model/_ce.py
+62
-0
fluid/language_model/train.py
fluid/language_model/train.py
+42
-28
fluid/language_model/utils.py
fluid/language_model/utils.py
+1
-2
未找到文件。
fluid/language_model/.run_ce.sh
0 → 100644
浏览文件 @
b362e71a
#!/bin/bash
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
cudaid
=
${
language_model
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py | python _ce.py
cudaid
=
${
language_model_m
:
=0,1,2,3
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py | python _ce.py
fluid/language_model/_ce.py
0 → 100644
浏览文件 @
b362e71a
# this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
imikolov_20_avg_ppl_kpi
=
CostKpi
(
'imikolov_20_avg_ppl'
,
0.2
,
0
)
imikolov_20_pass_duration_kpi
=
DurationKpi
(
'imikolov_20_pass_duration'
,
0.02
,
0
,
actived
=
True
)
imikolov_20_avg_ppl_kpi_card4
=
CostKpi
(
'imikolov_20_avg_ppl_card4'
,
0.2
,
0
)
imikolov_20_pass_duration_kpi_card4
=
DurationKpi
(
'imikolov_20_pass_duration_card4'
,
0.03
,
0
,
actived
=
True
)
tracking_kpis
=
[
imikolov_20_avg_ppl_kpi
,
imikolov_20_pass_duration_kpi
,
imikolov_20_avg_ppl_kpi_card4
,
imikolov_20_pass_duration_kpi_card4
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
fluid/language_model/train.py
浏览文件 @
b362e71a
import
os
import
sys
import
time
...
...
@@ -5,10 +6,12 @@ import numpy as np
import
math
import
paddle.fluid
as
fluid
import
paddle
.v2
as
paddle
import
paddle
import
utils
# random seed must set before configuring the network.
fluid
.
default_startup_program
().
random_seed
=
102
def
network
(
src
,
dst
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
):
""" network definition """
...
...
@@ -65,29 +68,19 @@ def train(train_reader,
""" train network """
vocab_size
=
len
(
vocab
)
#Input data
src_wordseq
=
fluid
.
layers
.
data
(
name
=
"src_wordseq"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
dst_wordseq
=
fluid
.
layers
.
data
(
name
=
"dst_wordseq"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# Train program
avg_cost
=
None
if
not
parallel
:
cost
=
network
(
src_wordseq
,
dst_wordseq
,
vocab_size
,
hid_size
,
cost
=
network
(
src_wordseq
,
dst_wordseq
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
else
:
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
cost
=
network
(
pd
.
read_input
(
src_wordseq
),
pd
.
read_input
(
dst_wordseq
),
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
)
pd
.
write_output
(
cost
)
cost
=
pd
()
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Optimization to minimize lost
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
base_lr
,
...
...
@@ -96,53 +89,74 @@ def train(train_reader,
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
# Initialize executor
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
total_time
=
0.0
fetch_list
=
[
avg_cost
.
name
]
for
pass_idx
in
xrange
(
pass_num
):
epoch_idx
=
pass_idx
+
1
print
"epoch_%d start"
%
epoch_idx
t0
=
time
.
time
()
i
=
0
newest_ppl
=
0
for
data
in
train_reader
():
i
+=
1
lod_src_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
lod_dst_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
ret_avg_cost
=
exe
.
run
(
fluid
.
default_main_program
(),
ret_avg_cost
=
train_exe
.
run
(
feed
=
{
"src_wordseq"
:
lod_src_wordseq
,
"dst_wordseq"
:
lod_dst_wordseq
},
fetch_list
=
[
avg_cost
],
use_program_cache
=
True
)
avg_ppl
=
math
.
exp
(
ret_avg_cost
[
0
]
)
fetch_list
=
fetch_list
)
avg_ppl
=
np
.
exp
(
ret_avg_cost
[
0
]
)
newest_ppl
=
np
.
mean
(
avg_ppl
)
if
i
%
100
==
0
:
print
"step:%d ppl:%.3f"
%
(
i
,
avg
_ppl
)
print
"step:%d ppl:%.3f"
%
(
i
,
newest
_ppl
)
t1
=
time
.
time
()
total_time
+=
t1
-
t0
print
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
total_time
/
epoch_idx
)
print
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
total_time
/
epoch_idx
)
if
pass_idx
==
pass_num
-
1
:
#Note: The following logs are special for CE monitoring.
#Other situations do not need to care about these logs.
gpu_num
=
get_cards
()
if
gpu_num
==
1
:
print
(
"kpis imikolov_20_pass_duration %s"
%
(
total_time
/
epoch_idx
))
print
(
"kpis imikolov_20_avg_ppl %s"
%
newest_ppl
)
else
:
print
(
"kpis imikolov_20_pass_duration_card%s %s"
%
\
(
gpu_num
,
total_time
/
epoch_idx
))
print
(
"kpis imikolov_20_avg_ppl_card%s %s"
%
(
gpu_num
,
newest_ppl
))
save_dir
=
"%s/epoch_%d"
%
(
model_dir
,
epoch_idx
)
feed_var_names
=
[
"src_wordseq"
,
"dst_wordseq"
]
fetch_vars
=
[
avg_cost
]
fluid
.
io
.
save_inference_model
(
save_dir
,
feed_var_names
,
fetch_vars
,
exe
)
fluid
.
io
.
save_inference_model
(
save_dir
,
feed_var_names
,
fetch_vars
,
exe
)
print
(
"model saved in %s"
%
save_dir
)
print
(
"finish training"
)
def
get_cards
():
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
return
num
def
train_net
():
""" do training """
batch_size
=
20
vocab
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
batch_size
=
batch_size
,
buffer_size
=
1000
,
word_freq_threshold
=
0
)
batch_size
=
batch_size
*
get_cards
()
,
buffer_size
=
1000
,
word_freq_threshold
=
0
)
train
(
train_reader
=
train_reader
,
vocab
=
vocab
,
...
...
@@ -152,7 +166,7 @@ def train_net():
batch_size
=
batch_size
,
pass_num
=
12
,
use_cuda
=
True
,
parallel
=
Fals
e
,
parallel
=
Tru
e
,
model_dir
=
"model"
,
init_low_bound
=-
0.1
,
init_high_bound
=
0.1
)
...
...
fluid/language_model/utils.py
浏览文件 @
b362e71a
...
...
@@ -3,8 +3,7 @@ import time
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
paddle
def
to_lodtensor
(
data
,
place
):
""" convert to LODtensor """
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录