提交 b3339631 编写于 作者: Y Yibing Liu

Reimpl in class to sepearte init and decoding

上级 1841cea1
...@@ -13,153 +13,146 @@ See the License for the specific language governing permissions and ...@@ -13,153 +13,146 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "post_decode_faster.h" #include "post_decode_faster.h"
#include "base/kaldi-common.h"
#include "base/timer.h" using namespace kaldi;
#include "decoder/decodable-matrix.h" typedef kaldi::int32 int32;
#include "decoder/faster-decoder.h" using fst::SymbolTable;
#include "fstext/fstext-lib.h" using fst::VectorFst;
#include "hmm/transition-model.h" using fst::StdArc;
#include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
#include "tree/context-dep.h" Decoder::Decoder(std::string word_syms_filename,
#include "util/common-utils.h" std::string fst_in_filename,
std::string logprior_rxfilename) {
std::vector<std::string> decode(std::string word_syms_filename, const char *usage =
std::string fst_in_filename, "Decode, reading log-likelihoods (of transition-ids or whatever symbol "
std::string logprior_rxfilename, "is on the graph) as matrices.";
std::string posterior_rspecifier,
std::string words_wspecifier, std::string words_wspecifier = "ark,t:out.ark";
std::string alignment_wspecifier) { std::string alignment_wspecifier = "";
ParseOptions po(usage);
binary = true;
acoustic_scale = 1.5;
allow_partial = true;
FasterDecoderOptions decoder_opts;
decoder_opts.Register(&po, true); // true == include obscure settings.
po.Register("binary", &binary, "Write output in binary mode");
po.Register("allow-partial",
&allow_partial,
"Produce output even when final state was not reached");
po.Register("acoustic-scale",
&acoustic_scale,
"Scaling factor for acoustic likelihoods");
words_writer = new Int32VectorWriter(words_wspecifier);
alignment_writer = new Int32VectorWriter(alignment_wspecifier);
word_syms = NULL;
if (word_syms_filename != "") {
word_syms = fst::SymbolTable::ReadText(word_syms_filename);
if (!word_syms)
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
}
std::ifstream is_logprior(logprior_rxfilename);
logprior.Read(is_logprior, false);
// It's important that we initialize decode_fst after loglikes_reader, as it
// can prevent crashes on systems installed without enough virtual memory.
// It has to do with what happens on UNIX systems if you call fork() on a
// large process: the page-table entries are duplicated, which requires a
// lot of virtual memory.
decode_fst = fst::ReadFstKaldi(fst_in_filename);
decoder = new FasterDecoder(*decode_fst, decoder_opts);
}
Decoder::~Decoder() {
if (!word_syms) delete word_syms;
delete decode_fst;
delete decoder;
delete words_writer;
delete alignment_writer;
}
std::vector<std::string> Decoder::decode(std::string posterior_rspecifier) {
SequentialBaseFloatMatrixReader posterior_reader(posterior_rspecifier);
std::vector<std::string> decoding_results; std::vector<std::string> decoding_results;
try { BaseFloat tot_like = 0.0;
using namespace kaldi; kaldi::int64 frame_count = 0;
typedef kaldi::int32 int32; int num_success = 0, num_fail = 0;
using fst::SymbolTable;
using fst::VectorFst; Timer timer;
using fst::StdArc; for (; !posterior_reader.Done(); posterior_reader.Next()) {
std::string key = posterior_reader.Key();
const char *usage = Matrix<BaseFloat> loglikes(posterior_reader.Value());
"Decode, reading log-likelihoods (of transition-ids or whatever symbol " KALDI_LOG << key << " " << loglikes.NumRows() << " x "
"is on the graph) as matrices."; << loglikes.NumCols();
ParseOptions po(usage);
bool binary = true; if (loglikes.NumRows() == 0) {
BaseFloat acoustic_scale = 1.5; KALDI_WARN << "Zero-length utterance: " << key;
bool allow_partial = true; num_fail++;
FasterDecoderOptions decoder_opts; continue;
decoder_opts.Register(&po, true); // true == include obscure settings.
po.Register("binary", &binary, "Write output in binary mode");
po.Register("allow-partial",
&allow_partial,
"Produce output even when final state was not reached");
po.Register("acoustic-scale",
&acoustic_scale,
"Scaling factor for acoustic likelihoods");
Int32VectorWriter words_writer(words_wspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
fst::SymbolTable *word_syms = NULL;
if (word_syms_filename != "") {
word_syms = fst::SymbolTable::ReadText(word_syms_filename);
if (!word_syms)
KALDI_ERR << "Could not read symbol table from file "
<< word_syms_filename;
} }
KALDI_ASSERT(loglikes.NumCols() == logprior.Dim());
SequentialBaseFloatMatrixReader posterior_reader(posterior_rspecifier);
std::ifstream is_logprior(logprior_rxfilename); loglikes.ApplyLog();
Vector<BaseFloat> logprior; loglikes.AddVecToRows(-1.0, logprior);
logprior.Read(is_logprior, false);
DecodableMatrixScaled decodable(loglikes, acoustic_scale);
// It's important that we initialize decode_fst after loglikes_reader, as it decoder->Decode(&decodable);
// can prevent crashes on systems installed without enough virtual memory.
// It has to do with what happens on UNIX systems if you call fork() on a VectorFst<LatticeArc> decoded; // linear FST.
// large process: the page-table entries are duplicated, which requires a
// lot of virtual memory. if ((allow_partial || decoder->ReachedFinal()) &&
VectorFst<StdArc> *decode_fst = fst::ReadFstKaldi(fst_in_filename); decoder->GetBestPath(&decoded)) {
num_success++;
BaseFloat tot_like = 0.0; if (!decoder->ReachedFinal())
kaldi::int64 frame_count = 0; KALDI_WARN << "Decoder did not reach end-state, outputting partial "
int num_success = 0, num_fail = 0; "traceback.";
FasterDecoder decoder(*decode_fst, decoder_opts);
std::vector<int32> alignment;
Timer timer; std::vector<int32> words;
LatticeWeight weight;
for (; !posterior_reader.Done(); posterior_reader.Next()) { frame_count += loglikes.NumRows();
std::string key = posterior_reader.Key();
Matrix<BaseFloat> loglikes(posterior_reader.Value()); GetLinearSymbolSequence(decoded, &alignment, &words, &weight);
KALDI_LOG << key << " " << loglikes.NumRows() << " x "
<< loglikes.NumCols(); words_writer->Write(key, words);
if (alignment_writer->IsOpen()) alignment_writer->Write(key, alignment);
if (loglikes.NumRows() == 0) { if (word_syms != NULL) {
KALDI_WARN << "Zero-length utterance: " << key; std::string res;
num_fail++; for (size_t i = 0; i < words.size(); i++) {
continue; std::string s = word_syms->Find(words[i]);
} res += s;
KALDI_ASSERT(loglikes.NumCols() == logprior.Dim()); if (s == "")
KALDI_ERR << "Word-id " << words[i] << " not in symbol table.";
loglikes.ApplyLog(); std::cerr << s << ' ';
loglikes.AddVecToRows(-1.0, logprior);
DecodableMatrixScaled decodable(loglikes, acoustic_scale);
decoder.Decode(&decodable);
VectorFst<LatticeArc> decoded; // linear FST.
if ((allow_partial || decoder.ReachedFinal()) &&
decoder.GetBestPath(&decoded)) {
num_success++;
if (!decoder.ReachedFinal())
KALDI_WARN << "Decoder did not reach end-state, outputting partial "
"traceback.";
std::vector<int32> alignment;
std::vector<int32> words;
LatticeWeight weight;
frame_count += loglikes.NumRows();
GetLinearSymbolSequence(decoded, &alignment, &words, &weight);
words_writer.Write(key, words);
if (alignment_writer.IsOpen()) alignment_writer.Write(key, alignment);
if (word_syms != NULL) {
std::string res;
for (size_t i = 0; i < words.size(); i++) {
std::string s = word_syms->Find(words[i]);
res += s;
if (s == "")
KALDI_ERR << "Word-id " << words[i] << " not in symbol table.";
std::cerr << s << ' ';
}
decoding_results.push_back(res);
} }
BaseFloat like = -weight.Value1() - weight.Value2(); decoding_results.push_back(res);
tot_like += like;
KALDI_LOG << "Log-like per frame for utterance " << key << " is "
<< (like / loglikes.NumRows()) << " over "
<< loglikes.NumRows() << " frames.";
} else {
num_fail++;
KALDI_WARN << "Did not successfully decode utterance " << key
<< ", len = " << loglikes.NumRows();
} }
BaseFloat like = -weight.Value1() - weight.Value2();
tot_like += like;
KALDI_LOG << "Log-like per frame for utterance " << key << " is "
<< (like / loglikes.NumRows()) << " over " << loglikes.NumRows()
<< " frames.";
} else {
num_fail++;
KALDI_WARN << "Did not successfully decode utterance " << key
<< ", len = " << loglikes.NumRows();
} }
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken [excluding initialization] " << elapsed
<< "s: real-time factor assuming 100 frames/sec is "
<< (elapsed * 100.0 / frame_count);
KALDI_LOG << "Done " << num_success << " utterances, failed for "
<< num_fail;
KALDI_LOG << "Overall log-likelihood per frame is "
<< (tot_like / frame_count) << " over " << frame_count
<< " frames.";
delete word_syms;
delete decode_fst;
} catch (const std::exception &e) {
std::cerr << e.what();
} }
double elapsed = timer.Elapsed();
KALDI_LOG << "Time taken [excluding initialization] " << elapsed
<< "s: real-time factor assuming 100 frames/sec is "
<< (elapsed * 100.0 / frame_count);
KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail;
KALDI_LOG << "Overall log-likelihood per frame is "
<< (tot_like / frame_count) << " over " << frame_count
<< " frames.";
return decoding_results; return decoding_results;
} }
...@@ -14,10 +14,36 @@ limitations under the License. */ ...@@ -14,10 +14,36 @@ limitations under the License. */
#include <string> #include <string>
#include <vector> #include <vector>
#include "base/kaldi-common.h"
#include "base/timer.h"
#include "decoder/decodable-matrix.h"
#include "decoder/faster-decoder.h"
#include "fstext/fstext-lib.h"
#include "hmm/transition-model.h"
#include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
#include "tree/context-dep.h"
#include "util/common-utils.h"
std::vector<std::string> decode(std::string word_syms_filename,
std::string fst_in_filename, class Decoder {
std::string logprior_rxfilename, public:
std::string posterior_respecifier, Decoder(std::string word_syms_filename,
std::string words_wspecifier, std::string fst_in_filename,
std::string alignment_wspecifier = ""); std::string logprior_rxfilename);
~Decoder();
std::vector<std::string> decode(std::string posterior_rspecifier);
private:
fst::SymbolTable *word_syms;
fst::VectorFst<fst::StdArc> *decode_fst;
kaldi::FasterDecoder *decoder;
kaldi::Vector<kaldi::BaseFloat> logprior;
kaldi::Int32VectorWriter *words_writer;
kaldi::Int32VectorWriter *alignment_writer;
bool binary;
kaldi::BaseFloat acoustic_scale;
bool allow_partial;
};
...@@ -20,10 +20,12 @@ limitations under the License. */ ...@@ -20,10 +20,12 @@ limitations under the License. */
namespace py = pybind11; namespace py = pybind11;
PYBIND11_MODULE(post_decode_faster, m) { PYBIND11_MODULE(post_decode_faster, m) {
m.doc() = "Decode function for Deep ASR model"; m.doc() = "Decoder for Deep ASR model";
m.def("decode", py::class_<Decoder>(m, "Decoder")
&decode, .def(py::init<std::string, std::string, std::string>())
"Decode one input probability matrix " .def("decode",
"and return the transcription"); &Decoder::decode,
"Decode one input probability matrix "
"and return the transcription");
} }
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册