未验证 提交 b2d0da6a 编写于 作者: R ruri 提交者: GitHub

refine infer in image classification (#4077)

上级 4ffbe264
......@@ -34,7 +34,7 @@ parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('data_dir', str, "./data/ILSVRC2012/", "The ImageNet datset")
add_arg('batch_size', int, 256, "batch size on the all devices.")
add_arg('batch_size', int, 256, "batch size on all the devices.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('class_dim', int, 1000, "Class number.")
parser.add_argument("--pretrained_model", default=None, required=True, type=str, help="The path to load pretrained model")
......
......@@ -23,6 +23,7 @@ import math
import numpy as np
import argparse
import functools
import re
import paddle
import paddle.fluid as fluid
......@@ -51,7 +52,7 @@ add_arg('interpolation', int, None, "The interpolation mode"
add_arg('padding_type', str, "SAME", "Padding type of convolution")
add_arg('use_se', bool, True, "Whether to use Squeeze-and-Excitation module for EfficientNet.")
add_arg('image_path', str, None, "single image path")
add_arg('batch_size', int, 8, "batch_size on all devices")
add_arg('batch_size', int, 8, "batch_size on all the devices")
add_arg('save_json_path', str, None, "save output to a json file")
# yapf: enable
......@@ -101,8 +102,9 @@ def infer(args):
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
places = fluid.framework.cuda_places()
compiled_program = fluid.compiler.CompiledProgram(
test_program).with_data_parallel()
test_program).with_data_parallel(places=places)
fluid.io.load_persistables(exe, args.pretrained_model)
if args.save_inference:
......@@ -119,42 +121,68 @@ def infer(args):
imagenet_reader = reader.ImageNetReader()
test_reader = imagenet_reader.test(settings=args)
feeder = fluid.DataFeeder(place=place, feed_list=[image])
test_reader = feeder.decorate_reader(test_reader, multi_devices=True)
feeder = fluid.DataFeeder(place=places, feed_list=[image])
TOPK = args.topk
if os.path.exists(args.class_map_path):
print("The map of readable label and numerical label has been found!")
f = open(args.class_map_path)
label_dict = {}
for item in f.readlines():
key = item.split(" ")[0]
value = [l.replace("\n", "") for l in item.split(" ")[1:]]
label_dict[key] = value
with open(args.class_map_path) as f:
label_dict = {}
strinfo = re.compile(r"\d+ ")
for item in f.readlines():
key = item.split(" ")[0]
value = [
strinfo.sub("", l).replace("\n", "")
for l in item.split(", ")
]
label_dict[key] = value
info = {}
parallel_data = []
parallel_id = []
place_num = paddle.fluid.core.get_cuda_device_count()
for batch_id, data in enumerate(test_reader()):
result = exe.run(compiled_program, fetch_list=fetch_list, feed=data)
result = result[0][0]
pred_label = np.argsort(result)[::-1][:TOPK]
if os.path.exists(args.class_map_path):
readable_pred_label = []
for label in pred_label:
readable_pred_label.append(label_dict[str(label)])
print(readable_pred_label)
info = "Test-{0}-score: {1}, class{2} {3}".format(
batch_id, result[pred_label], pred_label, readable_pred_label)
else:
info = "Test-{0}-score: {1}, class{2}".format(
batch_id, result[pred_label], pred_label)
print(info)
if args.save_json_path:
save_json(info, args.save_json_path)
sys.stdout.flush()
if args.image_path:
os.remove(".tmp.txt")
image_data = [[items[0]] for items in data]
image_id = [items[1] for items in data]
parallel_id.append(image_id)
parallel_data.append(image_data)
if place_num == len(parallel_data):
result = exe.run(
compiled_program,
fetch_list=fetch_list,
feed=list(feeder.feed_parallel(parallel_data, place_num)))
for i, res in enumerate(result[0]):
pred_label = np.argsort(res)[::-1][:TOPK]
real_id = str(np.array(parallel_id).flatten()[i])
_, real_id = os.path.split(real_id)
if os.path.exists(args.class_map_path):
readable_pred_label = []
for label in pred_label:
readable_pred_label.append(label_dict[str(label)])
info[real_id] = {}
info[real_id]['score'], info[real_id]['class'], info[
real_id]['class_name'] = str(res[pred_label]), str(
pred_label), readable_pred_label
else:
info[real_id] = {}
info[real_id]['score'], info[real_id]['class'] = str(res[
pred_label]), str(pred_label)
print(real_id, info[real_id])
sys.stdout.flush()
if args.save_json_path:
save_json(info, args.save_json_path)
parallel_data = []
parallel_id = []
if args.image_path:
os.remove(".tmp.txt")
def main():
......
......@@ -240,7 +240,7 @@ def process_image(sample, settings, mode, color_jitter, rotate):
if mode == 'train' or mode == 'val':
return (img, sample[1])
elif mode == 'test':
return (img, )
return (img, sample[0])
def process_batch_data(input_data, settings, mode, color_jitter, rotate):
......@@ -262,6 +262,23 @@ class ImageNetReader:
assert isinstance(seed, int), "shuffle seed must be int"
self.shuffle_seed = seed
def _get_single_card_bs(self, settings, mode):
if settings.use_gpu:
if mode == "val" and settings.test_batch_size:
single_card_bs = settings.test_batch_size // paddle.fluid.core.get_cuda_device_count(
)
else:
single_card_bs = settings.batch_size // paddle.fluid.core.get_cuda_device_count(
)
else:
if mode == "val" and settings.test_batch_size:
single_card_bs = settings.test_batch_size // int(
os.environ.get('CPU_NUM', 1))
else:
single_card_bs = settings.batch_size // int(
os.environ.get('CPU_NUM', 1))
return single_card_bs
def _reader_creator(self,
settings,
file_list,
......@@ -272,12 +289,7 @@ class ImageNetReader:
data_dir=None):
num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
if settings.use_gpu:
batch_size = settings.batch_size // paddle.fluid.core.get_cuda_device_count(
)
else:
batch_size = settings.batch_size // int(
os.environ.get('CPU_NUM', 1))
batch_size = self._get_single_card_bs(settings, mode)
def reader():
def read_file_list():
......@@ -304,12 +316,15 @@ class ImageNetReader:
full_lines = []
for i in range(settings.same_feed):
full_lines.append(temp_file)
for line in full_lines:
img_path, label = line.split()
img_path = os.path.join(data_dir, img_path)
batch_data.append([img_path, int(label)])
if len(batch_data) == batch_size:
if mode == 'train' or mode == 'val' or mode == 'test':
yield batch_data
batch_data = []
......
......@@ -102,8 +102,8 @@ def parse_args():
parser.add_argument('--image_shape', nargs='+', type=int, default=[3, 224, 224], help="The shape of image")
add_arg('num_epochs', int, 120, "The number of total epochs.")
add_arg('class_dim', int, 1000, "The number of total classes.")
add_arg('batch_size', int, 8, "Minibatch size on all devices.")
add_arg('test_batch_size', int, 16, "Test batch size on all devices.")
add_arg('batch_size', int, 8, "Minibatch size on all the devices.")
add_arg('test_batch_size', int, None, "Test batch size on all the devices.")
add_arg('lr', float, 0.1, "The learning rate.")
add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.")
add_arg('l2_decay', float, 1e-4, "The l2_decay parameter.")
......@@ -287,10 +287,35 @@ def init_model(exe, args, program):
print("Finish initing model from %s" % (args.checkpoint))
if args.pretrained_model:
# yapf: disable
#XXX: should rename all models' final fc layers name as final_fc_weights and final_fc_offset!
final_fc_name = [
"fc8_weights","fc8_offset", #alexnet
"fc_weights","fc_offset", #darknet, densenet, dpn, hrnet, mobilenet_v3, res2net, res2net_vd, resnext, resnext_vd, xception
#efficient
"out","out_offset", "out1","out1_offset", "out2","out2_offset", #googlenet
"final_fc_weights", "final_fc_offset", #inception_v4
"fc7_weights", "fc7_offset", #mobilenetv1
"fc10_weights", "fc10_offset", #mobilenetv2
"fc_0", #resnet, resnet_vc, resnet_vd
"fc.weight", "fc.bias", #resnext101_wsl
"fc6_weights", "fc6_offset", #se_resnet_vd, se_resnext, se_resnext_vd, shufflenet_v2, shufflenet_v2_swish,
#squeezenet
"fc8_weights", "fc8_offset", #vgg
"fc_bias" #"fc_weights", xception_deeplab
]
# yapf: enable
def is_parameter(var):
return isinstance(var, fluid.framework.Parameter) and (
not ("fc_0" in var.name)) and os.path.exists(
fc_exclude_flag = False
for item in final_fc_name:
if item in var.name:
fc_exclude_flag = True
return isinstance(
var, fluid.framework.
Parameter) and not fc_exclude_flag and os.path.exists(
os.path.join(args.pretrained_model, var.name))
print("Load pretrain weights from {}, exclude fc layer.".format(
......@@ -314,7 +339,7 @@ def save_model(args, exe, train_prog, info):
def save_json(info, path):
""" save eval result or infer result to file as json format.
"""
with open(path, 'a') as f:
with open(path, 'w') as f:
json.dump(info, f)
......@@ -493,7 +518,7 @@ def best_strategy_compiled(args,
exec_strategy.num_threads = 1
compiled_program = fluid.CompiledProgram(program).with_data_parallel(
loss_name=loss.name if mode == "train" else loss,
loss_name=loss.name if mode == "train" else None,
share_vars_from=share_prog if mode == "val" else None,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册