Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b2389e38
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b2389e38
编写于
3月 11, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fit for train.
上级
9da63d61
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
372 addition
and
718 deletion
+372
-718
fluid/PaddleCV/yolov3/config.py
fluid/PaddleCV/yolov3/config.py
+4
-7
fluid/PaddleCV/yolov3/edict.py
fluid/PaddleCV/yolov3/edict.py
+37
-0
fluid/PaddleCV/yolov3/eval.py
fluid/PaddleCV/yolov3/eval.py
+4
-6
fluid/PaddleCV/yolov3/infer.py
fluid/PaddleCV/yolov3/infer.py
+3
-7
fluid/PaddleCV/yolov3/learning_rate.py
fluid/PaddleCV/yolov3/learning_rate.py
+1
-1
fluid/PaddleCV/yolov3/models.py
fluid/PaddleCV/yolov3/models.py
+0
-295
fluid/PaddleCV/yolov3/models/__init__.py
fluid/PaddleCV/yolov3/models/__init__.py
+0
-0
fluid/PaddleCV/yolov3/models/darknet.py
fluid/PaddleCV/yolov3/models/darknet.py
+99
-102
fluid/PaddleCV/yolov3/models/yolov3.py
fluid/PaddleCV/yolov3/models/yolov3.py
+209
-279
fluid/PaddleCV/yolov3/reader.py
fluid/PaddleCV/yolov3/reader.py
+2
-2
fluid/PaddleCV/yolov3/train.py
fluid/PaddleCV/yolov3/train.py
+10
-17
fluid/PaddleCV/yolov3/utility.py
fluid/PaddleCV/yolov3/utility.py
+3
-2
未找到文件。
fluid/PaddleCV/yolov3/config.py
浏览文件 @
b2389e38
...
...
@@ -24,10 +24,6 @@ cfg = _C
# Training options
#
# batch
_C
.
batch
=
8
# Snapshot period
_C
.
snapshot_iter
=
2000
...
...
@@ -72,6 +68,9 @@ _C.pixel_stds = [0.229, 0.224, 0.225]
# SOLVER options
#
# batch size
_C
.
batch_size
=
64
# derived learning rate the to get the final learning rate.
_C
.
learning_rate
=
0.001
...
...
@@ -92,9 +91,7 @@ _C.weight_decay = 0.0005
# momentum with SGD
_C
.
momentum
=
0.9
# decay
_C
.
decay
=
0.0005
#
# ENV options
#
...
...
fluid/PaddleCV/yolov3/
config_parser
.py
→
fluid/PaddleCV/yolov3/
edict
.py
浏览文件 @
b2389e38
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
unicode_literals
LAYER_TYPES
=
[
"net"
,
"convolutional"
,
"shortcut"
,
"route"
,
"upsample"
,
"maxpool"
,
"yolo"
,
]
class
ConfigPaser
(
object
):
def
__init__
(
self
,
config_path
):
self
.
config_path
=
config_path
def
parse
(
self
):
with
open
(
self
.
config_path
)
as
cfg_file
:
model_defs
=
[]
for
line
in
cfg_file
.
readlines
():
line
=
line
.
strip
()
if
len
(
line
)
==
0
:
continue
if
line
.
startswith
(
'#'
):
continue
if
line
.
startswith
(
'['
):
layer_type
=
line
[
1
:
-
1
].
strip
()
if
layer_type
not
in
LAYER_TYPES
:
print
(
"Unknow config layer type: "
,
layer_type
)
return
None
model_defs
.
append
({})
model_defs
[
-
1
][
'type'
]
=
layer_type
else
:
key
,
value
=
line
.
split
(
'='
)
model_defs
[
-
1
][
key
.
strip
()]
=
value
.
strip
()
return
model_defs
class
AttrDict
(
dict
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
super
(
AttrDict
,
self
).
__init__
(
*
args
,
**
kwargs
)
def
__getattr__
(
self
,
name
):
if
name
in
self
.
__dict__
:
return
self
.
__dict__
[
name
]
elif
name
in
self
:
return
self
[
name
]
else
:
raise
AttributeError
(
name
)
def
__setattr__
(
self
,
name
,
value
):
if
name
in
self
.
__dict__
:
self
.
__dict__
[
name
]
=
value
else
:
self
[
name
]
=
value
fluid/PaddleCV/yolov3/eval.py
浏览文件 @
b2389e38
...
...
@@ -17,13 +17,13 @@ from __future__ import division
from
__future__
import
print_function
import
os
import
time
import
json
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
reader
import
models.yolov3
as
models
from
models.yolov3
import
YOLOv3
from
utility
import
print_arguments
,
parse_args
import
json
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
,
Params
from
config
import
cfg
...
...
@@ -39,11 +39,9 @@ def eval():
if
not
os
.
path
.
exists
(
'output'
):
os
.
mkdir
(
'output'
)
model
=
models
.
YOLOv3
(
cfg
.
model_cfg_path
,
is_train
=
False
)
model
=
YOLOv3
(
cfg
.
model_cfg_path
,
is_train
=
False
)
model
.
build_model
()
outputs
=
model
.
get_pred
()
yolo_anchors
=
model
.
get_yolo_anchors
()
yolo_classes
=
model
.
get_yolo_classes
()
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# yapf: disable
...
...
@@ -52,7 +50,7 @@ def eval():
return
os
.
path
.
exists
(
os
.
path
.
join
(
cfg
.
weights
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
cfg
.
weights
,
predicate
=
if_exist
)
# yapf: enable
input_size
=
model
.
get_input_size
()
input_size
=
cfg
.
input_size
test_reader
=
reader
.
test
(
input_size
,
1
)
label_names
,
label_ids
=
reader
.
get_label_infos
()
if
cfg
.
debug
:
...
...
fluid/PaddleCV/yolov3/infer.py
浏览文件 @
b2389e38
...
...
@@ -6,9 +6,7 @@ import paddle.fluid as fluid
import
box_utils
import
reader
from
utility
import
print_arguments
,
parse_args
import
models.yolov3
as
models
# from coco_reader import load_label_names
import
json
from
models.yolov3
import
YOLOv3
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
,
Params
from
config
import
cfg
...
...
@@ -19,12 +17,10 @@ def infer():
if
not
os
.
path
.
exists
(
'output'
):
os
.
mkdir
(
'output'
)
model
=
models
.
YOLOv3
(
cfg
.
model_cfg_path
,
is_train
=
False
)
model
=
YOLOv3
(
cfg
.
model_cfg_path
,
is_train
=
False
)
model
.
build_model
()
outputs
=
model
.
get_pred
()
input_size
=
model
.
get_input_size
()
yolo_anchors
=
model
.
get_yolo_anchors
()
yolo_classes
=
model
.
get_yolo_classes
()
input_size
=
cfg
.
input_size
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# yapf: disable
...
...
fluid/PaddleCV/yolov3/learning_rate.py
浏览文件 @
b2389e38
...
...
@@ -22,7 +22,7 @@ from paddle.fluid.layers import control_flow
def
exponential_with_warmup_decay
(
learning_rate
,
boundaries
,
values
,
warmup_iter
,
warmup_factor
,
start_step
):
warmup_iter
,
warmup_factor
):
global_step
=
lr_scheduler
.
_decay_step_counter
()
lr
=
fluid
.
layers
.
create_global_var
(
...
...
fluid/PaddleCV/yolov3/models.py
已删除
100644 → 0
浏览文件 @
9da63d61
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.initializer
import
Normal
from
paddle.fluid.regularizer
import
L2Decay
import
box_utils
from
config.config_parser
import
ConfigPaser
from
config.config
import
cfg
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
None
,
bn
=
False
,
name
=
None
,
is_train
=
True
):
if
bn
:
out
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
name
+
"_weights"
),
bias_attr
=
False
,
name
=
name
+
'.conv2d.output.1'
)
bn_name
=
"bn"
+
name
[
4
:]
out
=
fluid
.
layers
.
batch_norm
(
input
=
out
,
act
=
None
,
is_test
=
not
is_train
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_var'
,
name
=
bn_name
+
'.output'
)
else
:
out
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
name
+
"_weights"
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
name
+
"_bias"
),
name
=
name
+
'.conv2d.output.1'
)
if
act
==
'relu'
:
out
=
fluid
.
layers
.
relu
(
x
=
out
)
if
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
class
YOLOv3
(
object
):
def
__init__
(
self
,
model_cfg_path
,
is_train
=
True
,
use_pyreader
=
True
,
use_random
=
True
):
self
.
model_cfg_path
=
model_cfg_path
self
.
config_parser
=
ConfigPaser
(
model_cfg_path
)
self
.
is_train
=
is_train
self
.
use_pyreader
=
use_pyreader
self
.
use_random
=
use_random
self
.
outputs
=
[]
self
.
losses
=
[]
self
.
boxes
=
[]
self
.
scores
=
[]
self
.
downsample
=
32
def
build_model
(
self
):
model_defs
=
self
.
config_parser
.
parse
()
if
model_defs
is
None
:
return
None
self
.
hyperparams
=
model_defs
.
pop
(
0
)
assert
self
.
hyperparams
[
'type'
].
lower
()
==
"net"
,
\
"net config params should be given in the first segment named 'net'"
self
.
img_height
=
cfg
.
input_size
self
.
img_width
=
cfg
.
input_size
self
.
build_input
()
out
=
self
.
image
layer_outputs
=
[]
self
.
yolo_layer_defs
=
[]
self
.
yolo_anchors
=
[]
self
.
yolo_classes
=
[]
self
.
outputs
=
[]
for
i
,
layer_def
in
enumerate
(
model_defs
):
if
layer_def
[
'type'
]
==
'convolutional'
:
bn
=
layer_def
.
get
(
'batch_normalize'
,
0
)
ch_out
=
int
(
layer_def
[
'filters'
])
filter_size
=
int
(
layer_def
[
'size'
])
stride
=
int
(
layer_def
[
'stride'
])
padding
=
(
filter_size
-
1
)
//
2
if
int
(
layer_def
[
'pad'
])
else
0
act
=
layer_def
[
'activation'
]
out
=
conv_bn_layer
(
input
=
out
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
act
,
bn
=
bool
(
bn
),
name
=
"conv"
+
str
(
i
),
is_train
=
self
.
is_train
)
elif
layer_def
[
'type'
]
==
'shortcut'
:
layer_from
=
int
(
layer_def
[
'from'
])
out
=
fluid
.
layers
.
elementwise_add
(
x
=
out
,
y
=
layer_outputs
[
layer_from
],
name
=
"res"
+
str
(
i
))
elif
layer_def
[
'type'
]
==
'route'
:
layers
=
map
(
int
,
layer_def
[
'layers'
].
split
(
","
))
out
=
fluid
.
layers
.
concat
(
input
=
[
layer_outputs
[
i
]
for
i
in
layers
],
axis
=
1
)
elif
layer_def
[
'type'
]
==
'upsample'
:
scale
=
int
(
layer_def
[
'stride'
])
# get dynamic upsample output shape
shape_nchw
=
fluid
.
layers
.
shape
(
out
)
shape_hw
=
fluid
.
layers
.
slice
(
shape_nchw
,
axes
=
[
0
],
\
starts
=
[
2
],
ends
=
[
4
])
shape_hw
.
stop_gradient
=
True
in_shape
=
fluid
.
layers
.
cast
(
shape_hw
,
dtype
=
'int32'
)
out_shape
=
in_shape
*
scale
out_shape
.
stop_gradient
=
True
# reisze by actual_shape
out
=
fluid
.
layers
.
resize_nearest
(
input
=
out
,
scale
=
scale
,
actual_shape
=
out_shape
,
name
=
"upsample"
+
str
(
i
))
elif
layer_def
[
'type'
]
==
'maxpool'
:
pool_size
=
int
(
layer_def
[
'size'
])
pool_stride
=
int
(
layer_def
[
'stride'
])
pool_padding
=
0
if
pool_stride
==
1
and
pool_size
==
2
:
pool_padding
=
1
out
=
fluid
.
layers
.
pool2d
(
input
=
out
,
pool_type
=
'max'
,
pool_size
=
pool_size
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
)
elif
layer_def
[
'type'
]
==
'yolo'
:
self
.
yolo_layer_defs
.
append
(
layer_def
)
self
.
outputs
.
append
(
out
)
anchor_mask
=
map
(
int
,
layer_def
[
'mask'
].
split
(
','
))
anchors
=
map
(
int
,
layer_def
[
'anchors'
].
split
(
','
))
mask_anchors
=
[]
for
m
in
anchor_mask
:
mask_anchors
.
append
(
anchors
[
2
*
m
])
mask_anchors
.
append
(
anchors
[
2
*
m
+
1
])
self
.
yolo_anchors
.
append
(
mask_anchors
)
class_num
=
int
(
layer_def
[
'classes'
])
self
.
yolo_classes
.
append
(
class_num
)
if
self
.
is_train
:
ignore_thresh
=
float
(
layer_def
[
'ignore_thresh'
])
loss
=
fluid
.
layers
.
yolov3_loss
(
x
=
out
,
gtbox
=
self
.
gtbox
,
gtlabel
=
self
.
gtlabel
,
gtscore
=
self
.
gtscore
,
anchors
=
anchors
,
anchor_mask
=
anchor_mask
,
class_num
=
class_num
,
ignore_thresh
=
ignore_thresh
,
downsample_ratio
=
self
.
downsample
,
use_label_smooth
=
cfg
.
label_smooth
,
name
=
"yolo_loss"
+
str
(
i
))
self
.
losses
.
append
(
fluid
.
layers
.
reduce_mean
(
loss
))
else
:
boxes
,
scores
=
fluid
.
layers
.
yolo_box
(
x
=
out
,
img_size
=
self
.
im_shape
,
anchors
=
mask_anchors
,
class_num
=
class_num
,
conf_thresh
=
cfg
.
valid_thresh
,
downsample_ratio
=
self
.
downsample
,
name
=
"yolo_box"
+
str
(
i
))
self
.
boxes
.
append
(
boxes
)
self
.
scores
.
append
(
fluid
.
layers
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
]))
self
.
downsample
//=
2
layer_outputs
.
append
(
out
)
def
loss
(
self
):
return
sum
(
self
.
losses
)
def
get_pred
(
self
):
yolo_boxes
=
fluid
.
layers
.
concat
(
self
.
boxes
,
axis
=
1
)
yolo_scores
=
fluid
.
layers
.
concat
(
self
.
scores
,
axis
=
2
)
return
fluid
.
layers
.
multiclass_nms
(
bboxes
=
yolo_boxes
,
scores
=
yolo_scores
,
score_threshold
=
cfg
.
valid_thresh
,
nms_top_k
=
cfg
.
nms_topk
,
keep_top_k
=
cfg
.
nms_posk
,
nms_threshold
=
cfg
.
nms_thresh
,
background_label
=-
1
,
name
=
"multiclass_nms"
)
def
get_yolo_anchors
(
self
):
return
self
.
yolo_anchors
def
get_yolo_classes
(
self
):
return
self
.
yolo_classes
def
build_input
(
self
):
self
.
image_shape
=
[
3
,
self
.
img_height
,
self
.
img_width
]
if
self
.
use_pyreader
and
self
.
is_train
:
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
],
[
-
1
,
cfg
.
max_box_num
]],
lod_levels
=
[
0
,
0
,
0
,
0
],
dtypes
=
[
'float32'
]
*
2
+
[
'int32'
]
+
[
'float32'
],
use_double_buffer
=
True
)
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
=
fluid
.
layers
.
read_file
(
self
.
py_reader
)
else
:
self
.
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
)
self
.
gtbox
=
fluid
.
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
cfg
.
max_box_num
,
4
],
dtype
=
'float32'
)
self
.
gtlabel
=
fluid
.
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'int32'
)
self
.
gtscore
=
fluid
.
layers
.
data
(
name
=
'gtscore'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'float32'
)
self
.
im_shape
=
fluid
.
layers
.
data
(
name
=
"im_shape"
,
shape
=
[
2
],
dtype
=
'int32'
)
self
.
im_id
=
fluid
.
layers
.
data
(
name
=
"im_id"
,
shape
=
[
1
],
dtype
=
'int32'
)
def
feeds
(
self
):
if
not
self
.
is_train
:
return
[
self
.
image
,
self
.
im_id
,
self
.
im_shape
]
return
[
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
]
def
get_hyperparams
(
self
):
return
self
.
hyperparams
def
get_input_size
(
self
):
return
cfg
.
input_size
fluid/PaddleCV/yolov3/models/__init__.py
0 → 100644
浏览文件 @
b2389e38
fluid/PaddleCV/yolov3/models/darknet.py
浏览文件 @
b2389e38
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.regularizer
import
L2Decay
from
config
import
cfg
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'leaky'
,
i
=
0
):
conv1
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
"conv"
+
str
(
i
)
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
"bn"
+
str
(
i
)
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv1
,
act
=
None
,
is_test
=
True
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_var'
)
if
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
def
basicblock
(
input
,
ch_out
,
stride
,
i
):
"""
channel: convolution channels for 1x1 conv
"""
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
1
,
0
,
i
=
i
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
*
2
,
3
,
1
,
1
,
i
=
i
+
1
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
input
,
y
=
conv2
,
act
=
None
,
name
=
"res"
+
str
(
i
+
2
))
return
out
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
stride
,
i
):
res_out
=
block_func
(
input
,
ch_out
,
stride
,
i
=
i
)
for
j
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
1
,
i
=
i
+
j
*
3
)
return
res_out
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
],
basicblock
)
}
# num_filters = [32, 64, 128, 256, 512, 1024]
def
add_DarkNet53_conv_body
(
body_input
):
stages
,
block_func
=
DarkNet_cfg
[
53
]
stages
=
stages
[
0
:
5
]
conv1
=
conv_bn_layer
(
body_input
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
"leaky"
,
i
=
0
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
=
64
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
act
=
"leaky"
,
i
=
1
)
block3
=
layer_warp
(
block_func
,
conv2
,
32
,
stages
[
0
],
1
,
i
=
2
)
downsample3
=
conv_bn_layer
(
block3
,
ch_out
=
128
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
i
=
5
)
block4
=
layer_warp
(
block_func
,
downsample3
,
64
,
stages
[
1
],
1
,
i
=
6
)
downsample4
=
conv_bn_layer
(
block4
,
ch_out
=
256
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
i
=
12
)
block5
=
layer_warp
(
block_func
,
downsample4
,
128
,
stages
[
2
],
1
,
i
=
13
)
downsample5
=
conv_bn_layer
(
block5
,
ch_out
=
512
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
i
=
37
)
block6
=
layer_warp
(
block_func
,
downsample5
,
256
,
stages
[
3
],
1
,
i
=
38
)
downsample6
=
conv_bn_layer
(
block6
,
ch_out
=
1024
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
i
=
62
)
block7
=
layer_warp
(
block_func
,
downsample6
,
512
,
stages
[
4
],
1
,
i
=
63
)
return
block7
,
block6
,
block5
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.regularizer
import
L2Decay
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
act
=
'leaky'
,
is_test
=
True
,
name
=
None
):
conv1
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
name
+
".conv.weights"
),
bias_attr
=
False
)
bn_name
=
name
+
".bn"
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv1
,
act
=
None
,
is_test
=
is_test
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.scale'
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
bn_name
+
'.offset'
),
moving_mean_name
=
bn_name
+
'.mean'
,
moving_variance_name
=
bn_name
+
'.var'
)
if
act
==
'leaky'
:
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
def
downsample
(
input
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
is_test
=
True
,
name
=
None
):
return
conv_bn_layer
(
input
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
is_test
=
is_test
,
name
=
name
)
def
basicblock
(
input
,
ch_out
,
is_test
=
True
,
name
=
None
):
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
1
,
0
,
is_test
=
is_test
,
name
=
name
+
".0"
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
*
2
,
3
,
1
,
1
,
is_test
=
is_test
,
name
=
name
+
".1"
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
input
,
y
=
conv2
,
act
=
None
)
return
out
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
is_test
=
True
,
name
=
None
):
res_out
=
block_func
(
input
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.0'
.
format
(
name
))
for
j
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.{}'
.
format
(
name
,
j
))
return
res_out
DarkNet_cfg
=
{
53
:
([
1
,
2
,
8
,
8
,
4
],
basicblock
)
}
def
add_DarkNet53_conv_body
(
body_input
,
is_test
=
True
):
stages
,
block_func
=
DarkNet_cfg
[
53
]
stages
=
stages
[
0
:
5
]
conv1
=
conv_bn_layer
(
body_input
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
"yolo_input"
)
downsample_
=
downsample
(
conv1
,
ch_out
=
conv1
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"yolo_input.downsample"
)
index
=
2
blocks
=
[]
for
i
,
stage
in
enumerate
(
stages
):
block
=
layer_warp
(
block_func
,
downsample_
,
32
*
(
2
**
i
),
stage
,
is_test
=
is_test
,
name
=
"stage.{}"
.
format
(
i
))
blocks
.
append
(
block
)
index
+=
3
*
stage
if
i
<
len
(
stages
)
-
1
:
# do not downsaple in the last stage
downsample_
=
downsample
(
block
,
ch_out
=
block
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"stage.{}.downsample"
.
format
(
i
))
index
+=
1
return
blocks
[
-
1
:
-
4
:
-
1
]
fluid/PaddleCV/yolov3/models/yolov3.py
浏览文件 @
b2389e38
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.initializer
import
Normal
from
paddle.fluid.regularizer
import
L2Decay
from
config_parser
import
ConfigPaser
from
config
import
cfg
from
darknet
import
add_DarkNet53_conv_body
from
darknet
import
conv_bn_layer
def
yolo_detection_block
(
input
,
channel
,
i
):
assert
channel
%
2
==
0
,
"channel {} cannot be divided by 2"
.
format
(
channel
)
conv1
=
input
for
j
in
range
(
2
):
conv1
=
conv_bn_layer
(
conv1
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
i
=
i
+
j
*
2
)
conv1
=
conv_bn_layer
(
conv1
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
i
=
i
+
j
*
2
+
1
)
route
=
conv_bn_layer
(
conv1
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
i
=
i
+
4
)
tip
=
conv_bn_layer
(
route
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
i
=
i
+
5
)
return
route
,
tip
def
upsample
(
out
,
stride
=
2
,
name
=
None
):
out
=
out
scale
=
stride
# get dynamic upsample output shape
shape_nchw
=
fluid
.
layers
.
shape
(
out
)
shape_hw
=
fluid
.
layers
.
slice
(
shape_nchw
,
axes
=
[
0
],
starts
=
[
2
],
ends
=
[
4
])
shape_hw
.
stop_gradient
=
True
in_shape
=
fluid
.
layers
.
cast
(
shape_hw
,
dtype
=
'int32'
)
out_shape
=
in_shape
*
scale
out_shape
.
stop_gradient
=
True
# reisze by actual_shape
out
=
fluid
.
layers
.
resize_nearest
(
input
=
out
,
scale
=
scale
,
actual_shape
=
out_shape
,
name
=
name
)
return
out
class
YOLOv3
(
object
):
def
__init__
(
self
,
model_cfg_path
,
is_train
=
True
,
use_pyreader
=
True
,
use_random
=
True
):
self
.
model_cfg_path
=
model_cfg_path
self
.
config_parser
=
ConfigPaser
(
model_cfg_path
)
self
.
is_train
=
is_train
self
.
use_pyreader
=
use_pyreader
self
.
use_random
=
use_random
self
.
outputs
=
[]
self
.
losses
=
[]
self
.
downsample
=
32
self
.
ignore_thresh
=
.
7
self
.
class_num
=
80
def
build_model
(
self
):
self
.
img_height
=
cfg
.
input_size
self
.
img_width
=
cfg
.
input_size
self
.
build_input
()
out
=
self
.
image
self
.
yolo_anchors
=
[]
self
.
yolo_classes
=
[]
self
.
outputs
=
[]
self
.
boxes
=
[]
self
.
scores
=
[]
scale1
,
scale2
,
scale3
=
add_DarkNet53_conv_body
(
out
)
# 13*13 scale output
route1
,
tip1
=
yolo_detection_block
(
scale1
,
channel
=
512
,
i
=
75
)
# scale1 output
scale1_out
=
fluid
.
layers
.
conv2d
(
input
=
tip1
,
num_filters
=
255
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
"conv81_weights"
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
"conv81_bias"
))
self
.
outputs
.
append
(
scale1_out
)
route1
=
conv_bn_layer
(
input
=
route1
,
ch_out
=
256
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
i
=
84
)
# upsample
route1
=
upsample
(
route1
)
# concat
route1
=
fluid
.
layers
.
concat
(
input
=
[
route1
,
scale2
],
axis
=
1
)
# 26*26 scale output
route2
,
tip2
=
yolo_detection_block
(
route1
,
channel
=
256
,
i
=
87
)
# scale2 output
scale2_out
=
fluid
.
layers
.
conv2d
(
input
=
tip2
,
num_filters
=
255
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
"conv93_weights"
),
bias_attr
=
ParamAttr
(
name
=
"conv93_bias"
))
self
.
outputs
.
append
(
scale2_out
)
route2
=
conv_bn_layer
(
input
=
route2
,
ch_out
=
128
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
i
=
96
)
# upsample
route2
=
upsample
(
route2
)
# concat
route2
=
fluid
.
layers
.
concat
(
input
=
[
route2
,
scale3
],
axis
=
1
)
# 52*52 scale output
route3
,
tip3
=
yolo_detection_block
(
route2
,
channel
=
128
,
i
=
99
)
# scale3 output
scale3_out
=
fluid
.
layers
.
conv2d
(
input
=
tip3
,
num_filters
=
255
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
"conv105_weights"
),
bias_attr
=
ParamAttr
(
name
=
"conv105_bias"
))
self
.
outputs
.
append
(
scale3_out
)
# yolo
anchor_mask
=
[
6
,
7
,
8
,
3
,
4
,
5
,
0
,
1
,
2
]
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
for
i
,
out
in
enumerate
(
self
.
outputs
):
mask
=
anchor_mask
[
i
*
3
:
(
i
+
1
)
*
3
]
mask_anchors
=
[]
for
m
in
mask
:
mask_anchors
.
append
(
anchors
[
2
*
m
])
mask_anchors
.
append
(
anchors
[
2
*
m
+
1
])
self
.
yolo_anchors
.
append
(
mask_anchors
)
class_num
=
int
(
self
.
class_num
)
self
.
yolo_classes
.
append
(
class_num
)
if
self
.
is_train
:
ignore_thresh
=
float
(
self
.
ignore_thresh
)
loss
=
fluid
.
layers
.
yolov3_loss
(
x
=
out
,
gtbox
=
self
.
gtbox
,
gtlabel
=
self
.
gtlabel
,
# gtscore=self.gtscore,
anchors
=
anchors
,
anchor_mask
=
mask
,
class_num
=
class_num
,
ignore_thresh
=
ignore_thresh
,
downsample_ratio
=
self
.
downsample
,
# use_label_smooth=False,
name
=
"yolo_loss"
+
str
(
i
))
self
.
losses
.
append
(
fluid
.
layers
.
reduce_mean
(
loss
))
else
:
boxes
,
scores
=
fluid
.
layers
.
yolo_box
(
x
=
out
,
img_size
=
self
.
im_shape
,
anchors
=
mask_anchors
,
class_num
=
class_num
,
conf_thresh
=
cfg
.
valid_thresh
,
downsample_ratio
=
self
.
downsample
,
name
=
"yolo_box"
+
str
(
i
))
self
.
boxes
.
append
(
boxes
)
self
.
scores
.
append
(
fluid
.
layers
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
]))
self
.
downsample
//=
2
def
loss
(
self
):
return
sum
(
self
.
losses
)
def
get_pred
(
self
):
# return self.outputs
yolo_boxes
=
fluid
.
layers
.
concat
(
self
.
boxes
,
axis
=
1
)
yolo_scores
=
fluid
.
layers
.
concat
(
self
.
scores
,
axis
=
2
)
return
fluid
.
layers
.
multiclass_nms
(
bboxes
=
yolo_boxes
,
scores
=
yolo_scores
,
score_threshold
=
cfg
.
valid_thresh
,
nms_top_k
=
cfg
.
nms_topk
,
keep_top_k
=
cfg
.
nms_posk
,
nms_threshold
=
cfg
.
nms_thresh
,
background_label
=-
1
,
name
=
"multiclass_nms"
)
def
get_yolo_anchors
(
self
):
return
self
.
yolo_anchors
def
get_yolo_classes
(
self
):
return
self
.
yolo_classes
def
build_input
(
self
):
self
.
image_shape
=
[
3
,
self
.
img_height
,
self
.
img_width
]
if
self
.
use_pyreader
and
self
.
is_train
:
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
],
[
-
1
,
cfg
.
max_box_num
]],
lod_levels
=
[
0
,
0
,
0
,
0
],
dtypes
=
[
'float32'
]
*
2
+
[
'int32'
]
+
[
'float32'
],
use_double_buffer
=
True
)
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
=
fluid
.
layers
.
read_file
(
self
.
py_reader
)
else
:
self
.
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
)
self
.
gtbox
=
fluid
.
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
cfg
.
max_box_num
,
4
],
dtype
=
'float32'
)
self
.
gtlabel
=
fluid
.
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'int32'
)
self
.
gtscore
=
fluid
.
layers
.
data
(
name
=
'gtscore'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'float32'
)
self
.
im_shape
=
fluid
.
layers
.
data
(
name
=
"im_shape"
,
shape
=
[
2
],
dtype
=
'int32'
)
self
.
im_id
=
fluid
.
layers
.
data
(
name
=
"im_id"
,
shape
=
[
1
],
dtype
=
'int32'
)
def
feeds
(
self
):
if
not
self
.
is_train
:
return
[
self
.
image
,
self
.
im_id
,
self
.
im_shape
]
return
[
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
]
def
get_input_size
(
self
):
return
cfg
.
input_size
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.initializer
import
Normal
from
paddle.fluid.regularizer
import
L2Decay
from
config
import
cfg
from
.darknet
import
add_DarkNet53_conv_body
from
.darknet
import
conv_bn_layer
def
yolo_detection_block
(
input
,
channel
,
is_test
=
True
,
name
=
None
):
assert
channel
%
2
==
0
,
"channel {} cannot be divided by 2"
.
format
(
channel
)
conv
=
input
for
j
in
range
(
2
):
conv
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.{}.0'
.
format
(
name
,
j
))
conv
=
conv_bn_layer
(
conv
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.{}.1'
.
format
(
name
,
j
))
route
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.2'
.
format
(
name
))
tip
=
conv_bn_layer
(
route
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.tip'
.
format
(
name
))
return
route
,
tip
def
upsample
(
input
,
scale
=
2
,
name
=
None
):
# get dynamic upsample output shape
shape_nchw
=
fluid
.
layers
.
shape
(
input
)
shape_hw
=
fluid
.
layers
.
slice
(
shape_nchw
,
axes
=
[
0
],
starts
=
[
2
],
ends
=
[
4
])
shape_hw
.
stop_gradient
=
True
in_shape
=
fluid
.
layers
.
cast
(
shape_hw
,
dtype
=
'int32'
)
out_shape
=
in_shape
*
scale
out_shape
.
stop_gradient
=
True
# reisze by actual_shape
out
=
fluid
.
layers
.
resize_nearest
(
input
=
input
,
scale
=
scale
,
actual_shape
=
out_shape
,
name
=
name
)
return
out
class
YOLOv3
(
object
):
def
__init__
(
self
,
model_cfg_path
,
is_train
=
True
,
use_pyreader
=
True
,
use_random
=
True
):
self
.
model_cfg_path
=
model_cfg_path
self
.
is_train
=
is_train
self
.
use_pyreader
=
use_pyreader
self
.
use_random
=
use_random
self
.
outputs
=
[]
self
.
losses
=
[]
self
.
downsample
=
32
self
.
ignore_thresh
=
.
7
self
.
class_num
=
80
def
build_model
(
self
):
self
.
img_height
=
cfg
.
input_size
self
.
img_width
=
cfg
.
input_size
self
.
build_input
()
self
.
outputs
=
[]
self
.
boxes
=
[]
self
.
scores
=
[]
blocks
=
add_DarkNet53_conv_body
(
self
.
image
,
not
self
.
is_train
)
for
i
,
block
in
enumerate
(
blocks
):
if
i
>
0
:
block
=
fluid
.
layers
.
concat
(
input
=
[
route
,
block
],
axis
=
1
)
route
,
tip
=
yolo_detection_block
(
block
,
channel
=
512
//
(
2
**
i
),
is_test
=
(
not
self
.
is_train
),
name
=
"yolo_block.{}"
.
format
(
i
))
block_out
=
fluid
.
layers
.
conv2d
(
input
=
tip
,
num_filters
=
255
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
0.02
),
name
=
"yolo_output.{}.conv.weights"
.
format
(
i
)),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
regularizer
=
L2Decay
(
0.
),
name
=
"yolo_output.{}.conv.bias"
.
format
(
i
)))
self
.
outputs
.
append
(
block_out
)
if
i
<
len
(
blocks
)
-
1
:
route
=
conv_bn_layer
(
input
=
route
,
ch_out
=
256
//
(
2
**
i
),
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
(
not
self
.
is_train
),
name
=
"yolo_transition.{}"
.
format
(
i
))
# upsample
route
=
upsample
(
route
)
anchor_mask
=
[
6
,
7
,
8
,
3
,
4
,
5
,
0
,
1
,
2
]
anchors
=
[
10
,
13
,
16
,
30
,
33
,
23
,
30
,
61
,
62
,
45
,
59
,
119
,
116
,
90
,
156
,
198
,
373
,
326
]
for
i
,
out
in
enumerate
(
self
.
outputs
):
mask
=
anchor_mask
[
i
*
3
:
(
i
+
1
)
*
3
]
mask_anchors
=
[]
for
m
in
mask
:
mask_anchors
.
append
(
anchors
[
2
*
m
])
mask_anchors
.
append
(
anchors
[
2
*
m
+
1
])
class_num
=
int
(
self
.
class_num
)
if
self
.
is_train
:
ignore_thresh
=
float
(
self
.
ignore_thresh
)
loss
=
fluid
.
layers
.
yolov3_loss
(
x
=
out
,
gtbox
=
self
.
gtbox
,
gtlabel
=
self
.
gtlabel
,
gtscore
=
self
.
gtscore
,
anchors
=
anchors
,
anchor_mask
=
mask
,
class_num
=
class_num
,
ignore_thresh
=
ignore_thresh
,
downsample_ratio
=
self
.
downsample
,
use_label_smooth
=
cfg
.
label_smooth
,
name
=
"yolo_loss"
+
str
(
i
))
self
.
losses
.
append
(
fluid
.
layers
.
reduce_mean
(
loss
))
else
:
boxes
,
scores
=
fluid
.
layers
.
yolo_box
(
x
=
out
,
img_size
=
self
.
im_shape
,
anchors
=
mask_anchors
,
class_num
=
class_num
,
conf_thresh
=
cfg
.
valid_thresh
,
downsample_ratio
=
self
.
downsample
,
name
=
"yolo_box"
+
str
(
i
))
self
.
boxes
.
append
(
boxes
)
self
.
scores
.
append
(
fluid
.
layers
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
]))
self
.
downsample
//=
2
def
loss
(
self
):
return
sum
(
self
.
losses
)
def
get_pred
(
self
):
yolo_boxes
=
fluid
.
layers
.
concat
(
self
.
boxes
,
axis
=
1
)
yolo_scores
=
fluid
.
layers
.
concat
(
self
.
scores
,
axis
=
2
)
return
fluid
.
layers
.
multiclass_nms
(
bboxes
=
yolo_boxes
,
scores
=
yolo_scores
,
score_threshold
=
cfg
.
valid_thresh
,
nms_top_k
=
cfg
.
nms_topk
,
keep_top_k
=
cfg
.
nms_posk
,
nms_threshold
=
cfg
.
nms_thresh
,
background_label
=-
1
,
name
=
"multiclass_nms"
)
def
build_input
(
self
):
self
.
image_shape
=
[
3
,
self
.
img_height
,
self
.
img_width
]
if
self
.
use_pyreader
and
self
.
is_train
:
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
],
[
-
1
,
cfg
.
max_box_num
]],
lod_levels
=
[
0
,
0
,
0
,
0
],
dtypes
=
[
'float32'
]
*
2
+
[
'int32'
]
+
[
'float32'
],
use_double_buffer
=
True
)
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
=
fluid
.
layers
.
read_file
(
self
.
py_reader
)
else
:
self
.
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
)
self
.
gtbox
=
fluid
.
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
cfg
.
max_box_num
,
4
],
dtype
=
'float32'
)
self
.
gtlabel
=
fluid
.
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'int32'
)
self
.
gtscore
=
fluid
.
layers
.
data
(
name
=
'gtscore'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'float32'
)
self
.
im_shape
=
fluid
.
layers
.
data
(
name
=
"im_shape"
,
shape
=
[
2
],
dtype
=
'int32'
)
self
.
im_id
=
fluid
.
layers
.
data
(
name
=
"im_id"
,
shape
=
[
1
],
dtype
=
'int32'
)
def
feeds
(
self
):
if
not
self
.
is_train
:
return
[
self
.
image
,
self
.
im_id
,
self
.
im_shape
]
return
[
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
]
fluid/PaddleCV/yolov3/reader.py
浏览文件 @
b2389e38
...
...
@@ -255,8 +255,8 @@ def train(size=416,
random_sizes
=
[],
interval
=
10
,
pyreader_num
=
1
,
num_workers
=
16
,
max_queue
=
32
,
num_workers
=
2
,
max_queue
=
4
,
use_multiprocessing
=
True
):
generator
=
dsr
.
get_reader
(
'train'
,
size
,
batch_size
,
shuffle
,
int
(
mixup_iter
/
pyreader_num
),
random_sizes
)
...
...
fluid/PaddleCV/yolov3/train.py
浏览文件 @
b2389e38
...
...
@@ -26,7 +26,7 @@ from utility import parse_args, print_arguments, SmoothedValue
import
paddle
import
paddle.fluid
as
fluid
import
reader
import
models.yolov3
as
models
from
models.yolov3
import
YOLOv3
from
learning_rate
import
exponential_with_warmup_decay
from
config
import
cfg
...
...
@@ -42,27 +42,21 @@ def train():
if
not
os
.
path
.
exists
(
cfg
.
model_save_dir
):
os
.
makedirs
(
cfg
.
model_save_dir
)
model
=
models
.
YOLOv3
(
cfg
.
model_cfg_path
,
use_pyreader
=
cfg
.
use_pyreader
)
model
=
YOLOv3
(
cfg
.
model_cfg_path
,
use_pyreader
=
cfg
.
use_pyreader
)
model
.
build_model
()
input_size
=
model
.
get_input_size
()
input_size
=
cfg
.
input_size
loss
=
model
.
loss
()
loss
.
persistable
=
True
print
(
"cfg.learning"
,
cfg
.
learning_rate
)
print
(
"cfg.decay"
,
cfg
.
decay
)
devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
or
""
devices_num
=
len
(
devices
.
split
(
","
))
print
(
"Found {} CUDA devices."
.
format
(
devices_num
))
learning_rate
=
float
(
cfg
.
learning_rate
)
learning_rate
=
cfg
.
learning_rate
boundaries
=
cfg
.
lr_steps
gamma
=
cfg
.
lr_gamma
step_num
=
len
(
cfg
.
lr_steps
)
if
isinstance
(
gamma
,
list
):
values
=
[
learning_rate
*
g
for
g
in
gamma
]
else
:
values
=
[
learning_rate
*
(
gamma
**
i
)
for
i
in
range
(
step_num
+
1
)]
values
=
[
learning_rate
*
(
gamma
**
i
)
for
i
in
range
(
step_num
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
exponential_with_warmup_decay
(
...
...
@@ -70,10 +64,9 @@ def train():
boundaries
=
boundaries
,
values
=
values
,
warmup_iter
=
cfg
.
warm_up_iter
,
warmup_factor
=
cfg
.
warm_up_factor
,
start_step
=
cfg
.
start_iter
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
float
(
cfg
.
decay
)),
momentum
=
float
(
cfg
.
momentum
))
warmup_factor
=
cfg
.
warm_up_factor
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
cfg
.
weight_decay
),
momentum
=
cfg
.
momentum
)
optimizer
.
minimize
(
loss
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
...
...
@@ -98,11 +91,11 @@ def train():
mixup_iter
=
cfg
.
max_iter
-
cfg
.
start_iter
-
cfg
.
no_mixup_iter
if
cfg
.
use_pyreader
:
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
cfg
.
batch
)
/
devices_num
,
shuffle
=
True
,
mixup_iter
=
mixup_iter
*
devices_num
,
random_sizes
=
random_sizes
,
interval
=
10
,
pyreader_num
=
devices_num
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
cfg
.
batch_size
/
devices_num
,
shuffle
=
True
,
mixup_iter
=
mixup_iter
*
devices_num
,
random_sizes
=
random_sizes
,
interval
=
10
,
pyreader_num
=
devices_num
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
py_reader
=
model
.
py_reader
py_reader
.
decorate_paddle_reader
(
train_reader
)
else
:
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
cfg
.
batch
)
,
shuffle
=
True
,
mixup_iter
=
mixup_iter
,
random_sizes
=
random_sizes
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
cfg
.
batch_size
,
shuffle
=
True
,
mixup_iter
=
mixup_iter
,
random_sizes
=
random_sizes
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
def
save_model
(
postfix
):
...
...
fluid/PaddleCV/yolov3/utility.py
浏览文件 @
b2389e38
...
...
@@ -108,14 +108,15 @@ def parse_args():
add_arg
(
'start_iter'
,
int
,
0
,
"Start iteration."
)
add_arg
(
'use_multiprocess'
,
bool
,
True
,
"add multiprocess."
)
#SOLVER
add_arg
(
'batch_size'
,
int
,
64
,
"Learning rate."
)
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'max_iter'
,
int
,
500200
,
"Iter number."
)
add_arg
(
'snapshot_iter'
,
int
,
2000
,
"Save model every snapshot stride."
)
add_arg
(
'label_smooth'
,
bool
,
True
,
"Use label smooth in class label."
)
add_arg
(
'no_mixup_iter'
,
int
,
40000
,
"Disable mixup in last N iter."
)
# TRAIN TEST INFER
add_arg
(
'input_size'
,
int
,
608
,
"Image input size of YOLOv3."
)
add_arg
(
'random_shape'
,
bool
,
True
,
"Resize to random shape for train reader."
)
add_arg
(
'label_smooth'
,
bool
,
True
,
"Use label smooth in class label."
)
add_arg
(
'no_mixup_iter'
,
int
,
40000
,
"Disable mixup in last N iter."
)
add_arg
(
'valid_thresh'
,
float
,
0.005
,
"Valid confidence score for NMS."
)
add_arg
(
'nms_thresh'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'nms_topk'
,
int
,
400
,
"The number of boxes to perform NMS."
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录