未验证 提交 b1c37965 编写于 作者: Y Yang yaming 提交者: GitHub

Merge pull request #635 from pkuyym/fix-630

Change to parallel reader
"""This model read the sample from disk. """This module contains data processing related logic.
use multiprocessing to reading samples
push samples from one block to multiprocessing queue
Todos:
1. multiprocess read block from disk
""" """
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import random import random
import struct
import Queue import Queue
import time
import numpy as np import numpy as np
import struct from threading import Thread
from multiprocessing import Manager, Process
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_add_delta as trans_add_delta
class OneBlock(object): class SampleInfo(object):
""" struct for one block : """SampleInfo holds the necessary information to load a sample from disk.
contain label, label desc, feature, feature_desc
Attributes: Args:
label(str) : label path of one block feature_bin_path (str): File containing the feature data.
label_desc(str) : label description path of one block feature_start (int): Start position of the sample's feature data.
feature(str) : feature path of on block feature_size (int): Byte count of the sample's feature data.
feature_desc(str) : feature description path of on block feature_frame_num (int): Time length of the sample.
feature_dim (int): Feature dimension of one frame.
label_bin_path (str): File containing the label data.
label_size (int): Byte count of the sample's label data.
label_frame_num (int): Label number of the sample.
""" """
def __init__(self): def __init__(self, feature_bin_path, feature_start, feature_size,
"""the constructor.""" feature_frame_num, feature_dim, label_bin_path, label_start,
label_size, label_frame_num):
self.feature_bin_path = feature_bin_path
self.feature_start = feature_start
self.feature_size = feature_size
self.feature_frame_num = feature_frame_num
self.feature_dim = feature_dim
self.label = "label" self.label_bin_path = label_bin_path
self.label_desc = "label_desc" self.label_start = label_start
self.feature = "feature" self.label_size = label_size
self.feature_desc = "feature_desc" self.label_frame_num = label_frame_num
class DataRead(object): class SampleInfoBucket(object):
""" """SampleInfoBucket contains paths of several description files. Feature
Attributes: description file contains necessary information (including path of binary
_lblock(obj:`OneBlock`) : the list of OneBlock data, sample start position, sample byte number etc.) to access samples'
_ndrop_sentence_len(int): dropout the sentence which's frame_num large than _ndrop_sentence_len feature data and the same with the label description file. SampleInfoBucket
_que_sample(obj:`Queue`): sample buffer is the minimum unit to do shuffle.
_nframe_dim(int): the batch sample frame_dim(todo remove)
_nstart_block_idx(int): the start block id
_nload_block_num(int): the block num
"""
def __init__(self, sfeature_lst, slabel_lst, ndrop_sentence_len=512):
"""
Args:
sfeature_lst(str):feature lst path
slabel_lst(str):label lst path
Returns:
None
"""
self._lblock = []
self._ndrop_sentence_len = ndrop_sentence_len
self._que_sample = Queue.Queue()
self._nframe_dim = 120 * 11
self._nstart_block_idx = 0
self._nload_block_num = 1
self._ndrop_frame_len = 256
self._load_list(sfeature_lst, slabel_lst)
def _load_list(self, sfeature_lst, slabel_lst):
""" load list and shuffle
Args: Args:
sfeature_lst(str):feature lst path feature_bin_paths (list|tuple): Files containing the binary feature
slabel_lst(str):label lst path data.
Returns: feature_desc_paths (list|tuple): Files containing the description of
None samples' feature data.
label_bin_paths (list|tuple): Files containing the binary label data.
label_desc_paths (list|tuple): Files containing the description of
samples' label data.
""" """
lfeature = open(sfeature_lst).readlines()
llabel = open(slabel_lst).readlines()
assert len(llabel) == len(lfeature)
for i in range(0, len(lfeature), 2):
one_block = OneBlock()
one_block.label = llabel[i]
one_block.label_desc = llabel[i + 1]
one_block.feature = lfeature[i]
one_block.feature_desc = lfeature[i + 1]
self._lblock.append(one_block)
random.shuffle(self._lblock)
def _load_one_block(self, lsample, id):
"""read one block by id and push load sample in list lsample
Args:
lsample(list): return sample list
id(int): block id
Returns:
None
"""
if id >= len(self._lblock):
return
slabel_path = self._lblock[id].label.strip()
slabel_desc_path = self._lblock[id].label_desc.strip()
sfeature_path = self._lblock[id].feature.strip()
sfeature_desc_path = self._lblock[id].feature_desc.strip()
llabel_line = open(slabel_desc_path).readlines()
lfeature_line = open(sfeature_desc_path).readlines()
file_lable_bin = open(slabel_path, "r")
file_feature_bin = open(sfeature_path, "r")
sample_num = int(llabel_line[0].split()[1])
assert sample_num == int(lfeature_line[0].split()[1])
llabel_line = llabel_line[1:]
lfeature_line = lfeature_line[1:]
for i in range(sample_num):
# read label
llabel_split = llabel_line[i].split()
nlabel_start = int(llabel_split[2])
nlabel_size = int(llabel_split[3])
nlabel_frame_num = int(llabel_split[4])
file_lable_bin.seek(nlabel_start, 0)
label_bytes = file_lable_bin.read(nlabel_size)
assert nlabel_frame_num * 4 == len(label_bytes)
label_array = struct.unpack('I' * nlabel_frame_num, label_bytes)
label_data = np.array(label_array, dtype="int64")
label_data = label_data.reshape((nlabel_frame_num, 1))
# read feature
lfeature_split = lfeature_line[i].split()
nfeature_start = int(lfeature_split[2])
nfeature_size = int(lfeature_split[3])
nfeature_frame_num = int(lfeature_split[4])
nfeature_frame_dim = int(lfeature_split[5])
file_feature_bin.seek(nfeature_start, 0)
feature_bytes = file_feature_bin.read(nfeature_size)
assert nfeature_frame_num * nfeature_frame_dim * 4 == len(
feature_bytes)
feature_array = struct.unpack('f' * nfeature_frame_num *
nfeature_frame_dim, feature_bytes)
feature_data = np.array(feature_array, dtype="float32")
feature_data = feature_data.reshape(
(nfeature_frame_num, nfeature_frame_dim))
#drop long sentence
if self._ndrop_frame_len < feature_data.shape[0]:
continue
lsample.append((feature_data, label_data))
def get_one_batch(self, nbatch_size): def __init__(self, feature_bin_paths, feature_desc_paths, label_bin_paths,
"""construct one batch(feature, label), batch size is nbatch_size label_desc_paths):
Args: block_num = len(label_bin_paths)
nbatch_size(int): batch size assert len(label_desc_paths) == block_num
Returns: assert len(feature_bin_paths) == block_num
None assert len(feature_desc_paths) == block_num
""" self._block_num = block_num
if self._que_sample.empty():
lsample = self._load_block(
range(self._nstart_block_idx, self._nstart_block_idx +
self._nload_block_num, 1))
self._move_sample(lsample)
self._nstart_block_idx += self._nload_block_num
if self._que_sample.empty():
self._nstart_block_idx = 0
return None
#cal all frame num
ncur_len = 0
lod = [0]
samples = []
bat_feature = np.zeros((nbatch_size, self._nframe_dim))
for i in range(nbatch_size):
# empty clear zero
if self._que_sample.empty():
self._nstart_block_idx = 0
# copy
else:
(one_feature, one_label) = self._que_sample.get()
samples.append((one_feature, one_label))
ncur_len += one_feature.shape[0]
lod.append(ncur_len)
bat_feature = np.zeros((ncur_len, self._nframe_dim), dtype="float32")
bat_label = np.zeros((ncur_len, 1), dtype="int64")
ncur_len = 0
for sample in samples:
one_feature = sample[0]
one_label = sample[1]
nframe_num = one_feature.shape[0]
nstart = ncur_len
nend = ncur_len + nframe_num
bat_feature[nstart:nend, :] = one_feature
bat_label[nstart:nend, :] = one_label
ncur_len += nframe_num
return (bat_feature, bat_label, lod)
def set_trans(self, ltrans):
""" set transform list
Args:
ltrans(list): data tranform list
Returns:
None
"""
self._ltrans = ltrans
def _load_block(self, lblock_id): self._feature_bin_paths = feature_bin_paths
"""read blocks self._feature_desc_paths = feature_desc_paths
""" self._label_bin_paths = label_bin_paths
lsample = [] self._label_desc_paths = label_desc_paths
for id in lblock_id:
self._load_one_block(lsample, id)
# transform sample def generate_sample_info_list(self):
for (nidx, sample) in enumerate(lsample): sample_info_list = []
for trans in self._ltrans: for block_idx in xrange(self._block_num):
sample = trans.perform_trans(sample) label_bin_path = self._label_bin_paths[block_idx]
lsample[nidx] = sample label_desc_path = self._label_desc_paths[block_idx]
feature_bin_path = self._feature_bin_paths[block_idx]
feature_desc_path = self._feature_desc_paths[block_idx]
return lsample label_desc_lines = open(label_desc_path).readlines()
feature_desc_lines = open(feature_desc_path).readlines()
def load_block(self, lblock_id): sample_num = int(label_desc_lines[0].split()[1])
"""read blocks assert sample_num == int(feature_desc_lines[0].split()[1])
Args:
lblock_id(list):the block list id for i in xrange(sample_num):
Returns: feature_desc_split = feature_desc_lines[i + 1].split()
None feature_start = int(feature_desc_split[2])
""" feature_size = int(feature_desc_split[3])
lsample = [] feature_frame_num = int(feature_desc_split[4])
for id in lblock_id: feature_dim = int(feature_desc_split[5])
self._load_one_block(lsample, id)
label_desc_split = label_desc_lines[i + 1].split()
label_start = int(label_desc_split[2])
label_size = int(label_desc_split[3])
label_frame_num = int(label_desc_split[4])
sample_info_list.append(
SampleInfo(feature_bin_path, feature_start, feature_size,
feature_frame_num, feature_dim, label_bin_path,
label_start, label_size, label_frame_num))
# transform sample return sample_info_list
for (nidx, sample) in enumerate(lsample):
for trans in self._ltrans:
sample = trans.perform_trans(sample)
lsample[nidx] = sample
return lsample
def _move_sample(self, lsample): class EpochEndSignal():
"""move sample to queue pass
class DataReader(object):
"""DataReader provides basic audio sample preprocessing pipeline including
data loading and data augmentation.
Args: Args:
lsample(list): one block of samples read from disk feature_file_list (str): File containing paths of feature data file and
Returns: corresponding description file.
None label_file_list (str): File containing paths of label data file and
corresponding description file.
frame_dim (int): The final feature dimension of one frame after all
augmentation applied.
drop_frame_len (int): Samples whose label length above the value will be
dropped.
process_num (int): Number of processes for processing data.
sample_buffer_size (int): Buffer size to indicate the maximum samples
cached.
sample_info_buffer_size (int): Buffer size to indicate the maximum
sample information cached.
batch_buffer_size (int): Buffer size to indicate the maximum batch
cached.
shuffle_block_num (int): Block number indicating the minimum unit to do
shuffle.
random_seed (int): Random seed.
""" """
# random
random.shuffle(lsample)
for sample in lsample: def __init__(
self._que_sample.put(sample) self,
feature_file_list,
label_file_list,
frame_dim=120 * 11, # @TODO augmentor is responsible for the value
drop_frame_len=512,
process_num=10,
sample_buffer_size=1024,
sample_info_buffer_size=1024,
batch_buffer_size=1024,
shuffle_block_num=1,
random_seed=0):
self._feature_file_list = feature_file_list
self._label_file_list = label_file_list
self._frame_dim = frame_dim
self._drop_frame_len = drop_frame_len
self._shuffle_block_num = shuffle_block_num
self._block_info_list = None
self._rng = random.Random(random_seed)
self._bucket_list = None
self.generate_bucket_list(True)
self._order_id = 0
self._manager = Manager()
self._sample_buffer_size = sample_buffer_size
self._sample_info_buffer_size = sample_info_buffer_size
self._batch_buffer_size = batch_buffer_size
self._process_num = process_num
def generate_bucket_list(self, is_shuffle):
if self._block_info_list is None:
block_feature_info_lines = open(self._feature_file_list).readlines()
block_label_info_lines = open(self._label_file_list).readlines()
assert len(block_feature_info_lines) == len(block_label_info_lines)
self._block_info_list = []
for i in xrange(0, len(block_feature_info_lines), 2):
block_info = (block_feature_info_lines[i],
block_feature_info_lines[i + 1],
block_label_info_lines[i],
block_label_info_lines[i + 1])
self._block_info_list.append(
map(lambda line: line.strip(), block_info))
if is_shuffle:
self._rng.shuffle(self._block_info_list)
self._bucket_list = []
for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
bucket_block_info = self._block_info_list[i:i +
self._shuffle_block_num]
self._bucket_list.append(
SampleInfoBucket(
map(lambda info: info[0], bucket_block_info),
map(lambda info: info[1], bucket_block_info),
map(lambda info: info[2], bucket_block_info),
map(lambda info: info[3], bucket_block_info)))
# @TODO make this configurable
def set_transformers(self, transformers):
self._transformers = transformers
def _sample_generator(self):
sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
sample_queue = self._manager.Queue(self._sample_buffer_size)
self._order_id = 0
def ordered_feeding_task(sample_info_queue):
for sample_info_bucket in self._bucket_list:
sample_info_list = sample_info_bucket.generate_sample_info_list(
)
self._rng.shuffle(sample_info_list) # do shuffle here
for sample_info in sample_info_list:
sample_info_queue.put((sample_info, self._order_id))
self._order_id += 1
for i in xrange(self._process_num):
sample_info_queue.put(EpochEndSignal())
feeding_thread = Thread(
target=ordered_feeding_task, args=(sample_info_queue, ))
feeding_thread.daemon = True
feeding_thread.start()
def ordered_processing_task(sample_info_queue, sample_queue, out_order):
def read_bytes(fpath, start, size):
f = open(fpath, 'r')
f.seek(start, 0)
binary_bytes = f.read(size)
f.close()
return binary_bytes
ins = sample_info_queue.get()
while not isinstance(ins, EpochEndSignal):
sample_info, order_id = ins
feature_bytes = read_bytes(sample_info.feature_bin_path,
sample_info.feature_start,
sample_info.feature_size)
label_bytes = read_bytes(sample_info.label_bin_path,
sample_info.label_start,
sample_info.label_size)
assert sample_info.label_frame_num * 4 == len(label_bytes)
label_array = struct.unpack('I' * sample_info.label_frame_num,
label_bytes)
label_data = np.array(
label_array, dtype='int64').reshape(
(sample_info.label_frame_num, 1))
feature_frame_num = sample_info.feature_frame_num
feature_dim = sample_info.feature_dim
assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
feature_array = struct.unpack('f' * feature_frame_num *
feature_dim, feature_bytes)
feature_data = np.array(
feature_array, dtype='float32').reshape((
sample_info.feature_frame_num, sample_info.feature_dim))
sample_data = (feature_data, label_data)
for transformer in self._transformers:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data = transformer.perform_trans(sample_data)
while order_id != out_order[0]:
time.sleep(0.001)
# drop long sentence
if self._drop_frame_len >= sample_data[0].shape[0]:
sample_queue.put(sample_data)
out_order[0] += 1
ins = sample_info_queue.get()
sample_queue.put(EpochEndSignal())
out_order = self._manager.list([0])
args = (sample_info_queue, sample_queue, out_order)
workers = [
Process(
target=ordered_processing_task, args=args)
for _ in xrange(self._process_num)
]
for w in workers:
w.daemon = True
w.start()
finished_process_num = 0
while finished_process_num < self._process_num:
sample = sample_queue.get()
if isinstance(sample, EpochEndSignal):
finished_process_num += 1
continue
yield sample
feeding_thread.join()
for w in workers:
w.join()
def batch_iterator(self, batch_size, minimum_batch_size):
def batch_to_ndarray(batch_samples, lod):
batch_feature = np.zeros(
(lod[-1], self._frame_dim), dtype="float32")
batch_label = np.zeros((lod[-1], 1), dtype="int64")
start = 0
for sample in batch_samples:
frame_num = sample[0].shape[0]
batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
start += frame_num
return (batch_feature, batch_label)
def batch_assembling_task(sample_generator, batch_queue):
batch_samples = []
lod = [0]
for sample in sample_generator():
batch_samples.append(sample)
lod.append(lod[-1] + sample[0].shape[0])
if len(batch_samples) == batch_size:
(batch_feature, batch_label) = batch_to_ndarray(
batch_samples, lod)
batch_queue.put((batch_feature, batch_label, lod))
batch_samples = []
lod = [0]
if len(batch_samples) >= minimum_batch_size:
(batch_feature, batch_label) = batch_to_ndarray(batch_samples,
lod)
batch_queue.put((batch_feature, batch_label, lod))
batch_queue.put(EpochEndSignal())
batch_queue = Queue.Queue(self._batch_buffer_size)
assembling_thread = Thread(
target=batch_assembling_task,
args=(self._sample_generator, batch_queue))
assembling_thread.daemon = True
assembling_thread.start()
batch_data = batch_queue.get()
while not isinstance(batch_data, EpochEndSignal):
yield batch_data
batch_data = batch_queue.get()
assembling_thread.join()
...@@ -9,9 +9,9 @@ import time ...@@ -9,9 +9,9 @@ import time
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import paddle.v2.fluid.profiler as profiler import paddle.v2.fluid.profiler as profiler
import data_utils.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.trans_splice as trans_splice import data_utils.augmentor.trans_splice as trans_splice
import data_utils.data_reader as reader import data_utils.data_reader as reader
...@@ -22,6 +22,12 @@ def parse_args(): ...@@ -22,6 +22,12 @@ def parse_args():
type=int, type=int,
default=32, default=32,
help='The sequence number of a batch data. (default: %(default)d)') help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--minimum_batch_size',
type=int,
default=1,
help='The minimum sequence number of a batch data. (default: %(default)d)'
)
parser.add_argument( parser.add_argument(
'--stacked_num', '--stacked_num',
type=int, type=int,
...@@ -160,14 +166,15 @@ def train(args): ...@@ -160,14 +166,15 @@ def train(args):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
# @TODO datareader should take the responsibility (parsing from config file)
ltrans = [ ltrans = [
trans_add_delta.TransAddDelta(2, 2), trans_add_delta.TransAddDelta(2, 2),
trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var), trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var),
trans_splice.TransSplice() trans_splice.TransSplice()
] ]
data_reader = reader.DataRead(args.feature_lst, args.label_lst) data_reader = reader.DataReader(args.feature_lst, args.label_lst)
data_reader.set_trans(ltrans) data_reader.set_transformers(ltrans)
res_feature = fluid.LoDTensor() res_feature = fluid.LoDTensor()
res_label = fluid.LoDTensor() res_label = fluid.LoDTensor()
...@@ -175,22 +182,15 @@ def train(args): ...@@ -175,22 +182,15 @@ def train(args):
pass_start_time = time.time() pass_start_time = time.time()
words_seen = 0 words_seen = 0
accuracy.reset(exe) accuracy.reset(exe)
batch_id = 0 for batch_id, batch_data in enumerate(
while True: data_reader.batch_iterator(args.batch_size,
# load_data args.minimum_batch_size)):
one_batch = data_reader.get_one_batch(args.batch_size) (bat_feature, bat_label, lod) = batch_data
if one_batch == None:
break
(bat_feature, bat_label, lod) = one_batch
res_feature.set(bat_feature, place) res_feature.set(bat_feature, place)
res_feature.set_lod([lod]) res_feature.set_lod([lod])
res_label.set(bat_label, place) res_label.set(bat_label, place)
res_label.set_lod([lod]) res_label.set_lod([lod])
batch_id += 1
words_seen += lod[-1] words_seen += lod[-1]
loss, acc = exe.run( loss, acc = exe.run(
fluid.default_main_program(), fluid.default_main_program(),
feed={"feature": res_feature, feed={"feature": res_feature,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册