Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b1c37965
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b1c37965
编写于
2月 06, 2018
作者:
Y
Yang yaming
提交者:
GitHub
2月 06, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #635 from pkuyym/fix-630
Change to parallel reader
上级
c6733816
f34b7959
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
344 addition
and
252 deletion
+344
-252
fluid/DeepASR/data_utils/data_reader.py
fluid/DeepASR/data_utils/data_reader.py
+328
-236
fluid/DeepASR/stacked_dynamic_lstm.py
fluid/DeepASR/stacked_dynamic_lstm.py
+16
-16
未找到文件。
fluid/DeepASR/data_utils/data_reader.py
浏览文件 @
b1c37965
"""This model read the sample from disk.
use multiprocessing to reading samples
push samples from one block to multiprocessing queue
Todos:
1. multiprocess read block from disk
"""This module contains data processing related logic.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
random
import
struct
import
Queue
import
time
import
numpy
as
np
import
struct
from
threading
import
Thread
from
multiprocessing
import
Manager
,
Process
import
data_utils.augmentor.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.augmentor.trans_add_delta
as
trans_add_delta
class
OneBlock
(
object
):
""" struct for one block :
contain label, label desc, feature, feature_desc
class
SampleInfo
(
object
):
"""SampleInfo holds the necessary information to load a sample from disk.
Attributes:
label(str) : label path of one block
label_desc(str) : label description path of one block
feature(str) : feature path of on block
feature_desc(str) : feature description path of on block
Args:
feature_bin_path (str): File containing the feature data.
feature_start (int): Start position of the sample's feature data.
feature_size (int): Byte count of the sample's feature data.
feature_frame_num (int): Time length of the sample.
feature_dim (int): Feature dimension of one frame.
label_bin_path (str): File containing the label data.
label_size (int): Byte count of the sample's label data.
label_frame_num (int): Label number of the sample.
"""
def
__init__
(
self
):
"""the constructor."""
self
.
label
=
"label"
self
.
label_desc
=
"label_desc"
self
.
feature
=
"feature"
self
.
feature_desc
=
"feature_desc"
class
DataRead
(
object
):
def
__init__
(
self
,
feature_bin_path
,
feature_start
,
feature_size
,
feature_frame_num
,
feature_dim
,
label_bin_path
,
label_start
,
label_size
,
label_frame_num
):
self
.
feature_bin_path
=
feature_bin_path
self
.
feature_start
=
feature_start
self
.
feature_size
=
feature_size
self
.
feature_frame_num
=
feature_frame_num
self
.
feature_dim
=
feature_dim
self
.
label_bin_path
=
label_bin_path
self
.
label_start
=
label_start
self
.
label_size
=
label_size
self
.
label_frame_num
=
label_frame_num
class
SampleInfoBucket
(
object
):
"""SampleInfoBucket contains paths of several description files. Feature
description file contains necessary information (including path of binary
data, sample start position, sample byte number etc.) to access samples'
feature data and the same with the label description file. SampleInfoBucket
is the minimum unit to do shuffle.
Args:
feature_bin_paths (list|tuple): Files containing the binary feature
data.
feature_desc_paths (list|tuple): Files containing the description of
samples' feature data.
label_bin_paths (list|tuple): Files containing the binary label data.
label_desc_paths (list|tuple): Files containing the description of
samples' label data.
"""
Attributes:
_lblock(obj:`OneBlock`) : the list of OneBlock
_ndrop_sentence_len(int): dropout the sentence which's frame_num large than _ndrop_sentence_len
_que_sample(obj:`Queue`): sample buffer
_nframe_dim(int): the batch sample frame_dim(todo remove)
_nstart_block_idx(int): the start block id
_nload_block_num(int): the block num
def
__init__
(
self
,
feature_bin_paths
,
feature_desc_paths
,
label_bin_paths
,
label_desc_paths
):
block_num
=
len
(
label_bin_paths
)
assert
len
(
label_desc_paths
)
==
block_num
assert
len
(
feature_bin_paths
)
==
block_num
assert
len
(
feature_desc_paths
)
==
block_num
self
.
_block_num
=
block_num
self
.
_feature_bin_paths
=
feature_bin_paths
self
.
_feature_desc_paths
=
feature_desc_paths
self
.
_label_bin_paths
=
label_bin_paths
self
.
_label_desc_paths
=
label_desc_paths
def
generate_sample_info_list
(
self
):
sample_info_list
=
[]
for
block_idx
in
xrange
(
self
.
_block_num
):
label_bin_path
=
self
.
_label_bin_paths
[
block_idx
]
label_desc_path
=
self
.
_label_desc_paths
[
block_idx
]
feature_bin_path
=
self
.
_feature_bin_paths
[
block_idx
]
feature_desc_path
=
self
.
_feature_desc_paths
[
block_idx
]
label_desc_lines
=
open
(
label_desc_path
).
readlines
()
feature_desc_lines
=
open
(
feature_desc_path
).
readlines
()
sample_num
=
int
(
label_desc_lines
[
0
].
split
()[
1
])
assert
sample_num
==
int
(
feature_desc_lines
[
0
].
split
()[
1
])
for
i
in
xrange
(
sample_num
):
feature_desc_split
=
feature_desc_lines
[
i
+
1
].
split
()
feature_start
=
int
(
feature_desc_split
[
2
])
feature_size
=
int
(
feature_desc_split
[
3
])
feature_frame_num
=
int
(
feature_desc_split
[
4
])
feature_dim
=
int
(
feature_desc_split
[
5
])
label_desc_split
=
label_desc_lines
[
i
+
1
].
split
()
label_start
=
int
(
label_desc_split
[
2
])
label_size
=
int
(
label_desc_split
[
3
])
label_frame_num
=
int
(
label_desc_split
[
4
])
sample_info_list
.
append
(
SampleInfo
(
feature_bin_path
,
feature_start
,
feature_size
,
feature_frame_num
,
feature_dim
,
label_bin_path
,
label_start
,
label_size
,
label_frame_num
))
return
sample_info_list
class
EpochEndSignal
():
pass
class
DataReader
(
object
):
"""DataReader provides basic audio sample preprocessing pipeline including
data loading and data augmentation.
Args:
feature_file_list (str): File containing paths of feature data file and
corresponding description file.
label_file_list (str): File containing paths of label data file and
corresponding description file.
frame_dim (int): The final feature dimension of one frame after all
augmentation applied.
drop_frame_len (int): Samples whose label length above the value will be
dropped.
process_num (int): Number of processes for processing data.
sample_buffer_size (int): Buffer size to indicate the maximum samples
cached.
sample_info_buffer_size (int): Buffer size to indicate the maximum
sample information cached.
batch_buffer_size (int): Buffer size to indicate the maximum batch
cached.
shuffle_block_num (int): Block number indicating the minimum unit to do
shuffle.
random_seed (int): Random seed.
"""
def
__init__
(
self
,
sfeature_lst
,
slabel_lst
,
ndrop_sentence_len
=
512
):
"""
Args:
sfeature_lst(str):feature lst path
slabel_lst(str):label lst path
Returns:
None
"""
self
.
_lblock
=
[]
self
.
_ndrop_sentence_len
=
ndrop_sentence_len
self
.
_que_sample
=
Queue
.
Queue
()
self
.
_nframe_dim
=
120
*
11
self
.
_nstart_block_idx
=
0
self
.
_nload_block_num
=
1
self
.
_ndrop_frame_len
=
256
self
.
_load_list
(
sfeature_lst
,
slabel_lst
)
def
_load_list
(
self
,
sfeature_lst
,
slabel_lst
):
""" load list and shuffle
Args:
sfeature_lst(str):feature lst path
slabel_lst(str):label lst path
Returns:
None
"""
lfeature
=
open
(
sfeature_lst
).
readlines
()
llabel
=
open
(
slabel_lst
).
readlines
()
assert
len
(
llabel
)
==
len
(
lfeature
)
for
i
in
range
(
0
,
len
(
lfeature
),
2
):
one_block
=
OneBlock
()
one_block
.
label
=
llabel
[
i
]
one_block
.
label_desc
=
llabel
[
i
+
1
]
one_block
.
feature
=
lfeature
[
i
]
one_block
.
feature_desc
=
lfeature
[
i
+
1
]
self
.
_lblock
.
append
(
one_block
)
random
.
shuffle
(
self
.
_lblock
)
def
_load_one_block
(
self
,
lsample
,
id
):
"""read one block by id and push load sample in list lsample
Args:
lsample(list): return sample list
id(int): block id
Returns:
None
"""
if
id
>=
len
(
self
.
_lblock
):
return
slabel_path
=
self
.
_lblock
[
id
].
label
.
strip
()
slabel_desc_path
=
self
.
_lblock
[
id
].
label_desc
.
strip
()
sfeature_path
=
self
.
_lblock
[
id
].
feature
.
strip
()
sfeature_desc_path
=
self
.
_lblock
[
id
].
feature_desc
.
strip
()
llabel_line
=
open
(
slabel_desc_path
).
readlines
()
lfeature_line
=
open
(
sfeature_desc_path
).
readlines
()
file_lable_bin
=
open
(
slabel_path
,
"r"
)
file_feature_bin
=
open
(
sfeature_path
,
"r"
)
sample_num
=
int
(
llabel_line
[
0
].
split
()[
1
])
assert
sample_num
==
int
(
lfeature_line
[
0
].
split
()[
1
])
llabel_line
=
llabel_line
[
1
:]
lfeature_line
=
lfeature_line
[
1
:]
for
i
in
range
(
sample_num
):
# read label
llabel_split
=
llabel_line
[
i
].
split
()
nlabel_start
=
int
(
llabel_split
[
2
])
nlabel_size
=
int
(
llabel_split
[
3
])
nlabel_frame_num
=
int
(
llabel_split
[
4
])
file_lable_bin
.
seek
(
nlabel_start
,
0
)
label_bytes
=
file_lable_bin
.
read
(
nlabel_size
)
assert
nlabel_frame_num
*
4
==
len
(
label_bytes
)
label_array
=
struct
.
unpack
(
'I'
*
nlabel_frame_num
,
label_bytes
)
label_data
=
np
.
array
(
label_array
,
dtype
=
"int64"
)
label_data
=
label_data
.
reshape
((
nlabel_frame_num
,
1
))
# read feature
lfeature_split
=
lfeature_line
[
i
].
split
()
nfeature_start
=
int
(
lfeature_split
[
2
])
nfeature_size
=
int
(
lfeature_split
[
3
])
nfeature_frame_num
=
int
(
lfeature_split
[
4
])
nfeature_frame_dim
=
int
(
lfeature_split
[
5
])
file_feature_bin
.
seek
(
nfeature_start
,
0
)
feature_bytes
=
file_feature_bin
.
read
(
nfeature_size
)
assert
nfeature_frame_num
*
nfeature_frame_dim
*
4
==
len
(
feature_bytes
)
feature_array
=
struct
.
unpack
(
'f'
*
nfeature_frame_num
*
nfeature_frame_dim
,
feature_bytes
)
feature_data
=
np
.
array
(
feature_array
,
dtype
=
"float32"
)
feature_data
=
feature_data
.
reshape
(
(
nfeature_frame_num
,
nfeature_frame_dim
))
#drop long sentence
if
self
.
_ndrop_frame_len
<
feature_data
.
shape
[
0
]:
def
__init__
(
self
,
feature_file_list
,
label_file_list
,
frame_dim
=
120
*
11
,
# @TODO augmentor is responsible for the value
drop_frame_len
=
512
,
process_num
=
10
,
sample_buffer_size
=
1024
,
sample_info_buffer_size
=
1024
,
batch_buffer_size
=
1024
,
shuffle_block_num
=
1
,
random_seed
=
0
):
self
.
_feature_file_list
=
feature_file_list
self
.
_label_file_list
=
label_file_list
self
.
_frame_dim
=
frame_dim
self
.
_drop_frame_len
=
drop_frame_len
self
.
_shuffle_block_num
=
shuffle_block_num
self
.
_block_info_list
=
None
self
.
_rng
=
random
.
Random
(
random_seed
)
self
.
_bucket_list
=
None
self
.
generate_bucket_list
(
True
)
self
.
_order_id
=
0
self
.
_manager
=
Manager
()
self
.
_sample_buffer_size
=
sample_buffer_size
self
.
_sample_info_buffer_size
=
sample_info_buffer_size
self
.
_batch_buffer_size
=
batch_buffer_size
self
.
_process_num
=
process_num
def
generate_bucket_list
(
self
,
is_shuffle
):
if
self
.
_block_info_list
is
None
:
block_feature_info_lines
=
open
(
self
.
_feature_file_list
).
readlines
()
block_label_info_lines
=
open
(
self
.
_label_file_list
).
readlines
()
assert
len
(
block_feature_info_lines
)
==
len
(
block_label_info_lines
)
self
.
_block_info_list
=
[]
for
i
in
xrange
(
0
,
len
(
block_feature_info_lines
),
2
):
block_info
=
(
block_feature_info_lines
[
i
],
block_feature_info_lines
[
i
+
1
],
block_label_info_lines
[
i
],
block_label_info_lines
[
i
+
1
])
self
.
_block_info_list
.
append
(
map
(
lambda
line
:
line
.
strip
(),
block_info
))
if
is_shuffle
:
self
.
_rng
.
shuffle
(
self
.
_block_info_list
)
self
.
_bucket_list
=
[]
for
i
in
xrange
(
0
,
len
(
self
.
_block_info_list
),
self
.
_shuffle_block_num
):
bucket_block_info
=
self
.
_block_info_list
[
i
:
i
+
self
.
_shuffle_block_num
]
self
.
_bucket_list
.
append
(
SampleInfoBucket
(
map
(
lambda
info
:
info
[
0
],
bucket_block_info
),
map
(
lambda
info
:
info
[
1
],
bucket_block_info
),
map
(
lambda
info
:
info
[
2
],
bucket_block_info
),
map
(
lambda
info
:
info
[
3
],
bucket_block_info
)))
# @TODO make this configurable
def
set_transformers
(
self
,
transformers
):
self
.
_transformers
=
transformers
def
_sample_generator
(
self
):
sample_info_queue
=
self
.
_manager
.
Queue
(
self
.
_sample_info_buffer_size
)
sample_queue
=
self
.
_manager
.
Queue
(
self
.
_sample_buffer_size
)
self
.
_order_id
=
0
def
ordered_feeding_task
(
sample_info_queue
):
for
sample_info_bucket
in
self
.
_bucket_list
:
sample_info_list
=
sample_info_bucket
.
generate_sample_info_list
(
)
self
.
_rng
.
shuffle
(
sample_info_list
)
# do shuffle here
for
sample_info
in
sample_info_list
:
sample_info_queue
.
put
((
sample_info
,
self
.
_order_id
))
self
.
_order_id
+=
1
for
i
in
xrange
(
self
.
_process_num
):
sample_info_queue
.
put
(
EpochEndSignal
())
feeding_thread
=
Thread
(
target
=
ordered_feeding_task
,
args
=
(
sample_info_queue
,
))
feeding_thread
.
daemon
=
True
feeding_thread
.
start
()
def
ordered_processing_task
(
sample_info_queue
,
sample_queue
,
out_order
):
def
read_bytes
(
fpath
,
start
,
size
):
f
=
open
(
fpath
,
'r'
)
f
.
seek
(
start
,
0
)
binary_bytes
=
f
.
read
(
size
)
f
.
close
()
return
binary_bytes
ins
=
sample_info_queue
.
get
()
while
not
isinstance
(
ins
,
EpochEndSignal
):
sample_info
,
order_id
=
ins
feature_bytes
=
read_bytes
(
sample_info
.
feature_bin_path
,
sample_info
.
feature_start
,
sample_info
.
feature_size
)
label_bytes
=
read_bytes
(
sample_info
.
label_bin_path
,
sample_info
.
label_start
,
sample_info
.
label_size
)
assert
sample_info
.
label_frame_num
*
4
==
len
(
label_bytes
)
label_array
=
struct
.
unpack
(
'I'
*
sample_info
.
label_frame_num
,
label_bytes
)
label_data
=
np
.
array
(
label_array
,
dtype
=
'int64'
).
reshape
(
(
sample_info
.
label_frame_num
,
1
))
feature_frame_num
=
sample_info
.
feature_frame_num
feature_dim
=
sample_info
.
feature_dim
assert
feature_frame_num
*
feature_dim
*
4
==
len
(
feature_bytes
)
feature_array
=
struct
.
unpack
(
'f'
*
feature_frame_num
*
feature_dim
,
feature_bytes
)
feature_data
=
np
.
array
(
feature_array
,
dtype
=
'float32'
).
reshape
((
sample_info
.
feature_frame_num
,
sample_info
.
feature_dim
))
sample_data
=
(
feature_data
,
label_data
)
for
transformer
in
self
.
_transformers
:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data
=
transformer
.
perform_trans
(
sample_data
)
while
order_id
!=
out_order
[
0
]:
time
.
sleep
(
0.001
)
# drop long sentence
if
self
.
_drop_frame_len
>=
sample_data
[
0
].
shape
[
0
]:
sample_queue
.
put
(
sample_data
)
out_order
[
0
]
+=
1
ins
=
sample_info_queue
.
get
()
sample_queue
.
put
(
EpochEndSignal
())
out_order
=
self
.
_manager
.
list
([
0
])
args
=
(
sample_info_queue
,
sample_queue
,
out_order
)
workers
=
[
Process
(
target
=
ordered_processing_task
,
args
=
args
)
for
_
in
xrange
(
self
.
_process_num
)
]
for
w
in
workers
:
w
.
daemon
=
True
w
.
start
()
finished_process_num
=
0
while
finished_process_num
<
self
.
_process_num
:
sample
=
sample_queue
.
get
()
if
isinstance
(
sample
,
EpochEndSignal
):
finished_process_num
+=
1
continue
lsample
.
append
((
feature_data
,
label_data
))
def
get_one_batch
(
self
,
nbatch_size
):
"""construct one batch(feature, label), batch size is nbatch_size
Args:
nbatch_size(int): batch size
Returns:
None
"""
if
self
.
_que_sample
.
empty
():
lsample
=
self
.
_load_block
(
range
(
self
.
_nstart_block_idx
,
self
.
_nstart_block_idx
+
self
.
_nload_block_num
,
1
))
self
.
_move_sample
(
lsample
)
self
.
_nstart_block_idx
+=
self
.
_nload_block_num
if
self
.
_que_sample
.
empty
():
self
.
_nstart_block_idx
=
0
return
None
#cal all frame num
ncur_len
=
0
lod
=
[
0
]
samples
=
[]
bat_feature
=
np
.
zeros
((
nbatch_size
,
self
.
_nframe_dim
))
for
i
in
range
(
nbatch_size
):
# empty clear zero
if
self
.
_que_sample
.
empty
():
self
.
_nstart_block_idx
=
0
# copy
else
:
(
one_feature
,
one_label
)
=
self
.
_que_sample
.
get
()
samples
.
append
((
one_feature
,
one_label
))
ncur_len
+=
one_feature
.
shape
[
0
]
lod
.
append
(
ncur_len
)
bat_feature
=
np
.
zeros
((
ncur_len
,
self
.
_nframe_dim
),
dtype
=
"float32"
)
bat_label
=
np
.
zeros
((
ncur_len
,
1
),
dtype
=
"int64"
)
ncur_len
=
0
for
sample
in
samples
:
one_feature
=
sample
[
0
]
one_label
=
sample
[
1
]
nframe_num
=
one_feature
.
shape
[
0
]
nstart
=
ncur_len
nend
=
ncur_len
+
nframe_num
bat_feature
[
nstart
:
nend
,
:]
=
one_feature
bat_label
[
nstart
:
nend
,
:]
=
one_label
ncur_len
+=
nframe_num
return
(
bat_feature
,
bat_label
,
lod
)
def
set_trans
(
self
,
ltrans
):
""" set transform list
Args:
ltrans(list): data tranform list
Returns:
None
"""
self
.
_ltrans
=
ltrans
def
_load_block
(
self
,
lblock_id
):
"""read blocks
"""
lsample
=
[]
for
id
in
lblock_id
:
self
.
_load_one_block
(
lsample
,
id
)
# transform sample
for
(
nidx
,
sample
)
in
enumerate
(
lsample
):
for
trans
in
self
.
_ltrans
:
sample
=
trans
.
perform_trans
(
sample
)
lsample
[
nidx
]
=
sample
return
lsample
def
load_block
(
self
,
lblock_id
):
"""read blocks
Args:
lblock_id(list):the block list id
Returns:
None
"""
lsample
=
[]
for
id
in
lblock_id
:
self
.
_load_one_block
(
lsample
,
id
)
# transform sample
for
(
nidx
,
sample
)
in
enumerate
(
lsample
):
for
trans
in
self
.
_ltrans
:
sample
=
trans
.
perform_trans
(
sample
)
lsample
[
nidx
]
=
sample
return
lsample
def
_move_sample
(
self
,
lsample
):
"""move sample to queue
Args:
lsample(list): one block of samples read from disk
Returns:
None
"""
# random
random
.
shuffle
(
lsample
)
for
sample
in
lsample
:
self
.
_que_sample
.
put
(
sample
)
yield
sample
feeding_thread
.
join
()
for
w
in
workers
:
w
.
join
()
def
batch_iterator
(
self
,
batch_size
,
minimum_batch_size
):
def
batch_to_ndarray
(
batch_samples
,
lod
):
batch_feature
=
np
.
zeros
(
(
lod
[
-
1
],
self
.
_frame_dim
),
dtype
=
"float32"
)
batch_label
=
np
.
zeros
((
lod
[
-
1
],
1
),
dtype
=
"int64"
)
start
=
0
for
sample
in
batch_samples
:
frame_num
=
sample
[
0
].
shape
[
0
]
batch_feature
[
start
:
start
+
frame_num
,
:]
=
sample
[
0
]
batch_label
[
start
:
start
+
frame_num
,
:]
=
sample
[
1
]
start
+=
frame_num
return
(
batch_feature
,
batch_label
)
def
batch_assembling_task
(
sample_generator
,
batch_queue
):
batch_samples
=
[]
lod
=
[
0
]
for
sample
in
sample_generator
():
batch_samples
.
append
(
sample
)
lod
.
append
(
lod
[
-
1
]
+
sample
[
0
].
shape
[
0
])
if
len
(
batch_samples
)
==
batch_size
:
(
batch_feature
,
batch_label
)
=
batch_to_ndarray
(
batch_samples
,
lod
)
batch_queue
.
put
((
batch_feature
,
batch_label
,
lod
))
batch_samples
=
[]
lod
=
[
0
]
if
len
(
batch_samples
)
>=
minimum_batch_size
:
(
batch_feature
,
batch_label
)
=
batch_to_ndarray
(
batch_samples
,
lod
)
batch_queue
.
put
((
batch_feature
,
batch_label
,
lod
))
batch_queue
.
put
(
EpochEndSignal
())
batch_queue
=
Queue
.
Queue
(
self
.
_batch_buffer_size
)
assembling_thread
=
Thread
(
target
=
batch_assembling_task
,
args
=
(
self
.
_sample_generator
,
batch_queue
))
assembling_thread
.
daemon
=
True
assembling_thread
.
start
()
batch_data
=
batch_queue
.
get
()
while
not
isinstance
(
batch_data
,
EpochEndSignal
):
yield
batch_data
batch_data
=
batch_queue
.
get
()
assembling_thread
.
join
()
fluid/DeepASR/stacked_dynamic_lstm.py
浏览文件 @
b1c37965
...
...
@@ -9,9 +9,9 @@ import time
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.profiler
as
profiler
import
data_utils.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.trans_add_delta
as
trans_add_delta
import
data_utils.trans_splice
as
trans_splice
import
data_utils.
augmentor.
trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.
augmentor.
trans_add_delta
as
trans_add_delta
import
data_utils.
augmentor.
trans_splice
as
trans_splice
import
data_utils.data_reader
as
reader
...
...
@@ -22,6 +22,12 @@ def parse_args():
type
=
int
,
default
=
32
,
help
=
'The sequence number of a batch data. (default: %(default)d)'
)
parser
.
add_argument
(
'--minimum_batch_size'
,
type
=
int
,
default
=
1
,
help
=
'The minimum sequence number of a batch data. (default: %(default)d)'
)
parser
.
add_argument
(
'--stacked_num'
,
type
=
int
,
...
...
@@ -160,14 +166,15 @@ def train(args):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
# @TODO datareader should take the responsibility (parsing from config file)
ltrans
=
[
trans_add_delta
.
TransAddDelta
(
2
,
2
),
trans_mean_variance_norm
.
TransMeanVarianceNorm
(
args
.
mean_var
),
trans_splice
.
TransSplice
()
]
data_reader
=
reader
.
DataRead
(
args
.
feature_lst
,
args
.
label_lst
)
data_reader
.
set_trans
(
ltrans
)
data_reader
=
reader
.
DataRead
er
(
args
.
feature_lst
,
args
.
label_lst
)
data_reader
.
set_trans
formers
(
ltrans
)
res_feature
=
fluid
.
LoDTensor
()
res_label
=
fluid
.
LoDTensor
()
...
...
@@ -175,22 +182,15 @@ def train(args):
pass_start_time
=
time
.
time
()
words_seen
=
0
accuracy
.
reset
(
exe
)
batch_id
=
0
while
True
:
# load_data
one_batch
=
data_reader
.
get_one_batch
(
args
.
batch_size
)
if
one_batch
==
None
:
break
(
bat_feature
,
bat_label
,
lod
)
=
one_batch
for
batch_id
,
batch_data
in
enumerate
(
data_reader
.
batch_iterator
(
args
.
batch_size
,
args
.
minimum_batch_size
)):
(
bat_feature
,
bat_label
,
lod
)
=
batch_data
res_feature
.
set
(
bat_feature
,
place
)
res_feature
.
set_lod
([
lod
])
res_label
.
set
(
bat_label
,
place
)
res_label
.
set_lod
([
lod
])
batch_id
+=
1
words_seen
+=
lod
[
-
1
]
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"feature"
:
res_feature
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录