提交 ae6a8832 编写于 作者: F fengjiayi 提交者: GitHub

Merge pull request #2 from Canpio/dev

add and test auc evaluator
...@@ -38,7 +38,7 @@ def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128): ...@@ -38,7 +38,7 @@ def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
cost = paddle.layer.classification_cost(input=output, label=lbl) cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost, output return cost, output, lbl
def train_cnn_model(num_pass): def train_cnn_model(num_pass):
...@@ -57,7 +57,7 @@ def train_cnn_model(num_pass): ...@@ -57,7 +57,7 @@ def train_cnn_model(num_pass):
lambda: paddle.dataset.imdb.test(word_dict), batch_size=100) lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
# network config # network config
[cost, _] = convolution_net(dict_dim, class_dim=class_dim) [cost, output, label] = convolution_net(dict_dim, class_dim=class_dim)
# create parameters # create parameters
parameters = paddle.parameters.create(cost) parameters = paddle.parameters.create(cost)
# create optimizer # create optimizer
...@@ -66,6 +66,9 @@ def train_cnn_model(num_pass): ...@@ -66,6 +66,9 @@ def train_cnn_model(num_pass):
regularization=paddle.optimizer.L2Regularization(rate=8e-4), regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(average_window=0.5)) model_average=paddle.optimizer.ModelAverage(average_window=0.5))
# add auc evaluator
paddle.evaluator.auc(input=output, label=label)
# create trainer # create trainer
trainer = paddle.trainer.SGD( trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=adam_optimizer) cost=cost, parameters=parameters, update_equation=adam_optimizer)
...@@ -104,7 +107,7 @@ def cnn_infer(file_name): ...@@ -104,7 +107,7 @@ def cnn_infer(file_name):
dict_dim = len(word_dict) dict_dim = len(word_dict)
class_dim = 2 class_dim = 2
[_, output] = convolution_net(dict_dim, class_dim=class_dim) [_, output, _] = convolution_net(dict_dim, class_dim=class_dim)
parameters = paddle.parameters.Parameters.from_tar(gzip.open(file_name)) parameters = paddle.parameters.Parameters.from_tar(gzip.open(file_name))
infer_data = [] infer_data = []
......
...@@ -54,7 +54,7 @@ def fc_net(input_dim, class_dim=2, emb_dim=256): ...@@ -54,7 +54,7 @@ def fc_net(input_dim, class_dim=2, emb_dim=256):
cost = paddle.layer.classification_cost(input=output, label=lbl) cost = paddle.layer.classification_cost(input=output, label=lbl)
return cost, output return cost, output, lbl
def train_dnn_model(num_pass): def train_dnn_model(num_pass):
...@@ -73,7 +73,8 @@ def train_dnn_model(num_pass): ...@@ -73,7 +73,8 @@ def train_dnn_model(num_pass):
lambda: paddle.dataset.imdb.test(word_dict), batch_size=100) lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
# network config # network config
[cost, _] = fc_net(dict_dim, class_dim=class_dim) [cost, output, label] = fc_net(dict_dim, class_dim=class_dim)
# create parameters # create parameters
parameters = paddle.parameters.create(cost) parameters = paddle.parameters.create(cost)
# create optimizer # create optimizer
...@@ -82,6 +83,9 @@ def train_dnn_model(num_pass): ...@@ -82,6 +83,9 @@ def train_dnn_model(num_pass):
regularization=paddle.optimizer.L2Regularization(rate=8e-4), regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(average_window=0.5)) model_average=paddle.optimizer.ModelAverage(average_window=0.5))
# add auc evaluator
paddle.evaluator.auc(input=output, label=label)
# create trainer # create trainer
trainer = paddle.trainer.SGD( trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=adam_optimizer) cost=cost, parameters=parameters, update_equation=adam_optimizer)
...@@ -120,7 +124,7 @@ def dnn_infer(file_name): ...@@ -120,7 +124,7 @@ def dnn_infer(file_name):
dict_dim = len(word_dict) dict_dim = len(word_dict)
class_dim = 2 class_dim = 2
[_, output] = fc_net(dict_dim, class_dim=class_dim) [_, output, _] = fc_net(dict_dim, class_dim=class_dim)
parameters = paddle.parameters.Parameters.from_tar(gzip.open(file_name)) parameters = paddle.parameters.Parameters.from_tar(gzip.open(file_name))
infer_data = [] infer_data = []
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册