提交 adee3cf1 编写于 作者: C caoying03

refine comments of DSSM.

上级 f3b1bb5a
# 深度结构化语义模型 (Deep Structured Semantic Models, DSSM)
DSSM使用DNN模型在一个连续的语义空间中学习文本低纬的表示向量,并且建模两个句子间的语义相似度。
本例演示如何使用 PaddlePaddle实现一个通用的DSSM 模型,用于建模两个字符串间的语义相似度,
模型实现支持通用的数据格式,用户替换数据便可以在真实场景中使用该模型。
DSSM使用DNN模型在一个连续的语义空间中学习文本低纬的表示向量,并且建模两个句子间的语义相似度。本例演示如何使用PaddlePaddle实现一个通用的DSSM 模型,用于建模两个字符串间的语义相似度,模型实现支持通用的数据格式,用户替换数据便可以在真实场景中使用该模型。
## 背景介绍
DSSM \[[1](##参考文献)\]是微软研究院13年提出来的经典的语义模型,用于学习两个文本之间的语义距离,
广义上模型也可以推广和适用如下场景:
DSSM \[[1](##参考文献)\]是微软研究院13年提出来的经典的语义模型,用于学习两个文本之间的语义距离,广义上模型也可以推广和适用如下场景:
1. CTR预估模型,衡量用户搜索词(Query)与候选网页集合(Documents)之间的相关联程度。
2. 文本相关性,衡量两个字符串间的语义相关程度。
3. 自动推荐,衡量User与被推荐的Item之间的关联程度。
DSSM 已经发展成了一个框架,可以很自然地建模两个记录之间的距离关系,
例如对于文本相关性问题,可以用余弦相似度 (cosin similarity) 来刻画语义距离;
而对于搜索引擎的结果排序,可以在DSSM上接上Rank损失训练出一个排序模型。
DSSM 已经发展成了一个框架,可以很自然地建模两个记录之间的距离关系,例如对于文本相关性问题,可以用余弦相似度 (cosin similarity) 来刻画语义距离;而对于搜索引擎的结果排序,可以在DSSM上接上Rank损失训练出一个排序模型。
## 模型简介
在原论文\[[1](#参考文献)\]中,DSSM模型用来衡量用户搜索词 Query 和文档集合 Documents 之间隐含的语义关系,模型结构如下
......@@ -23,12 +18,9 @@ DSSM 已经发展成了一个框架,可以很自然地建模两个记录之间
图 1. DSSM 原始结构
</p>
其贯彻的思想是, **用DNN将高维特征向量转化为低纬空间的连续向量(图中红色框部分)**
**在上层用cosine similarity来衡量用户搜索词与候选文档间的语义相关性**
其贯彻的思想是, **用DNN将高维特征向量转化为低纬空间的连续向量(图中红色框部分)****在上层使用cosine similarity来衡量用户搜索词与候选文档间的语义相关性**
在最顶层损失函数的设计上,原始模型使用类似Word2Vec中负例采样的方法,
一个Query会抽取正例 $D+$ 和4个负例 $D-$ 整体上算条件概率用对数似然函数作为损失,
这也就是图 1中类似 $P(D_1|Q)$ 的结构,具体细节请参考原论文。
在最顶层损失函数的设计上,原始模型使用类似Word2Vec中负例采样的方法,一个Query会抽取正例 $D+$ 和4个负例 $D-$ 整体上算条件概率用对数似然函数作为损失,这也就是图 1中类似 $P(D_1|Q)$ 的结构,具体细节请参考原论文。
随着后续优化DSSM模型的结构得以简化\[[3](#参考文献)\],演变为:
......@@ -37,37 +29,30 @@ DSSM 已经发展成了一个框架,可以很自然地建模两个记录之间
图 2. DSSM通用结构
</p>
图中的空白方框可以用任何模型替代,比如全连接FC,卷积CNN,RNN等都可以,
该模型结构专门用于衡量两个元素(比如字符串)间的语义距离。
在现实使用中,DSSM模型会作为基础的积木,搭配上不同的损失函数来实现具体的功能,比如
图中的空白方框可以用任何模型替代,例如:全连接FC,卷积CNN,RNN等。该模型结构专门用于衡量两个元素(比如字符串)间的语义距离。在实际任务中,DSSM模型会作为基础的积木,搭配上不同的损失函数来实现具体的功能,比如:
- 在排序学习中,将 图 2 中结构添加 pairwise rank损失,变成一个排序模型
- 在CTR预估中,对点击与否做0,1二元分类,添加交叉熵损失变成一个分类模型
- 在需要对一个子串打分时,可以使用余弦相似度来计算相似度,变成一个回归模型
本例将尝试面向应用提供一个比较通用的解决方案,在模型任务类型上支持
本例提供一个比较通用的解决方案,在模型任务类型上支持:
- 分类
- [-1, 1] 值域内的回归
- Pairwise-Rank
在生成低纬语义向量的模型结构上,本模型支持以下三种:
在生成低纬语义向量的模型结构上,支持以下三种:
- FC, 多层全连接层
- CNN,卷积神经网络
- RNN,递归神经网络
## 模型实现
DSSM模型可以拆成三小块实现,分别是左边和右边的DNN,以及顶层的损失函数。
在复杂任务中,左右两边DNN的结构可以是不同的,比如在原始论文中左右分别学习Query和Document的semantic vector,
两者数据的数据不同,建议对应定制DNN的结构。
DSSM模型可以拆成三部分:分别是左边和右边的DNN,以及顶层的损失函数。在复杂任务中,左右两边DNN的结构可以不同。在原始论文中左右网络分别学习Query和Document的语义向量,两者数据的数据不同,建议对应定制DNN的结构。
本例中为了简便和通用,将左右两个DNN的结构都设为相同的,因此只有三个选项FC,CNN,RNN等
**本例中为了简便和通用,将左右两个DNN的结构设为相同,因此只提供三个选项FC、CNN、RNN**
在损失函数的设计方面,也支持三种,分类, 回归, 排序;
其中,在回归和排序两种损失中,左右两边的匹配程度通过余弦相似度(cossim)来计算;
在分类任务中,类别预测的分布通过softmax计算。
损失函数的设计也支持三种类型:分类, 回归, 排序;其中,在回归和排序两种损失中,左右两边的匹配程度通过余弦相似度(cosine similairty)来计算;在分类任务中,类别预测的分布通过softmax计算。
在其它教程中,对上述很多内容都有过详细的介绍,例如:
......@@ -77,19 +62,17 @@ DSSM模型可以拆成三小块实现,分别是左边和右边的DNN,以及
相关原理在此不再赘述,本文接下来的篇幅主要集中介绍使用PaddlePaddle实现这些结构上。
如图3,回归和分类模型的结构很相似
如图3,回归和分类模型的结构相似:
<p align="center">
<img src="./images/dssm3.jpg"/><br/><br/>
图 3. DSSM for REGRESSION or CLASSIFICATION
</p>
最重要的组成部分包括词向量,图中`(1)`,`(2)`两个低纬向量的学习器(可以用RNN/CNN/FC中的任意一种实现),
最上层对应的损失函数。
而Pairwise Rank的结构会复杂一些,类似两个 图 4. 中的结构,增加了对应的损失函数:
最重要的组成部分包括词向量,图中`(1)`,`(2)`两个低纬向量的学习器(可以用RNN/CNN/FC中的任意一种实现),最上层对应的损失函数。
- 模型总体思想是,用同一个source(源)为左右两个target(目标)分别打分——`(a),(b)`,学习目标是(a),(b)间的大小关系
Pairwise Rank的结构会复杂一些,图 4. 中的结构会出现两次,增加了对应的损失函数,模型总体思想是:
- 给定同一个source(源)为左右两个target(目标)分别打分——`(a),(b)`,学习目标是(a),(b)之间的大小关系
- `(a)``(b)`类似图3中结构,用于给source和target的pair打分
- `(1)``(2)`的结构其实是共用的,都表示同一个source,图中为了表达效果展开成两个
......@@ -98,17 +81,18 @@ DSSM模型可以拆成三小块实现,分别是左边和右边的DNN,以及
图 4. DSSM for Pairwise Rank
</p>
下面是各个部分具体的实现方法,所有的代码均包含在 `./network_conf.py` 中。
下面是各个部分的具体实现,相关代码均包含在 `./network_conf.py` 中。
### 创建文本的词向量表
```python
def create_embedding(self, input, prefix=''):
'''
Create an embedding table whose name has a `prefix`.
'''
logger.info("create embedding table [%s] which dimention is %d" %
"""
Create word embedding. The `prefix` is added in front of the name of
embedding"s learnable parameter.
"""
logger.info("Create embedding table [%s] whose dimention is %d" %
(prefix, self.dnn_dims[0]))
emb = paddle.layer.embedding(
input=input,
......@@ -123,14 +107,15 @@ def create_embedding(self, input, prefix=''):
```python
def create_cnn(self, emb, prefix=''):
'''
"""
A multi-layer CNN.
:param emb: The word embedding.
:type emb: paddle.layer
:param prefix: The prefix will be added to of layers' names.
:type prefix: str
"""
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between more than one `cnn` parts.
'''
def create_conv(context_len, hidden_size, prefix):
key = "%s_%d_%d" % (prefix, context_len, hidden_size)
conv = paddle.networks.sequence_conv_pool(
......@@ -138,21 +123,18 @@ def create_cnn(self, emb, prefix=''):
context_len=context_len,
hidden_size=hidden_size,
# set parameter attr for parameter sharing
context_proj_param_attr=ParamAttr(name=key + 'contex_proj.w'),
fc_param_attr=ParamAttr(name=key + '_fc.w'),
fc_bias_attr=ParamAttr(name=key + '_fc.b'),
pool_bias_attr=ParamAttr(name=key + '_pool.b'))
context_proj_param_attr=ParamAttr(name=key + "contex_proj.w"),
fc_param_attr=ParamAttr(name=key + "_fc.w"),
fc_bias_attr=ParamAttr(name=key + "_fc.b"),
pool_bias_attr=ParamAttr(name=key + "_pool.b"))
return conv
logger.info('create a sequence_conv_pool which context width is 3')
conv_3 = create_conv(3, self.dnn_dims[1], "cnn")
logger.info('create a sequence_conv_pool which context width is 4')
conv_4 = create_conv(4, self.dnn_dims[1], "cnn")
return conv_3, conv_4
```
CNN 接受 embedding table输出的词向量序列,通过卷积和池化操作捕捉到原始句子的关键信息,
最终输出一个语义向量(可以认为是句子向量)。
CNN 接受词向量序列,通过卷积和池化操作捕捉到原始句子的关键信息,最终输出一个语义向量(可以认为是句子向量)。
本例的实现中,分别使用了窗口长度为3和4的CNN学到的句子向量按元素求和得到最终的句子向量。
......@@ -162,9 +144,9 @@ RNN很适合学习变长序列的信息,使用RNN来学习句子的信息几
```python
def create_rnn(self, emb, prefix=''):
'''
"""
A GRU sentence vector learner.
'''
"""
gru = paddle.networks.simple_gru(
input=emb,
size=self.dnn_dims[1],
......@@ -176,18 +158,19 @@ def create_rnn(self, emb, prefix=''):
return sent_vec
```
### FC 结构实现
### 多层全连接网络FC
```python
def create_fc(self, emb, prefix=''):
'''
"""
A multi-layer fully connected neural networks.
:param emb: The output of the embedding layer
:type emb: paddle.layer
:param prefix: A prefix will be added to the layers' names.
:type prefix: str
"""
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between more than one `fc` parts.
'''
_input_layer = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
fc = paddle.layer.fc(
......@@ -198,21 +181,17 @@ def create_fc(self, emb, prefix=''):
return fc
```
在构建FC时需要首先使用`paddle.layer.pooling` 对词向量序列进行最大池化操作,将边长序列转化为一个固定维度向量,
作为整个句子的语义表达,使用最大池化能够降低句子长度对句向量表达的影响。
在构建全连接网络时首先使用`paddle.layer.pooling` 对词向量序列进行最大池化操作,将边长序列转化为一个固定维度向量,作为整个句子的语义表达,使用最大池化能够降低句子长度对句向量表达的影响。
### 多层DNN实现
### 多层DNN
在 CNN/DNN/FC提取出 semantic vector后,在上层可继续接多层FC来实现深层DNN结构。
```python
def create_dnn(self, sent_vec, prefix):
# if more than three layers exists, a fc layer will be added.
if len(self.dnn_dims) > 1:
_input_layer = sent_vec
for id, dim in enumerate(self.dnn_dims[1:]):
name = "%s_fc_%d_%d" % (prefix, id, dim)
logger.info("create fc layer [%s] which dimention is %d" %
(name, dim))
fc = paddle.layer.fc(
input=_input_layer,
size=dim,
......@@ -224,119 +203,13 @@ def create_dnn(self, sent_vec, prefix):
return _input_layer
```
### 分类或回归实现
分类和回归的结构比较相似,因此可以用一个函数创建出来
### 分类及回归
分类和回归的结构比较相似,具体实现请参考[network_conf.py]( https://github.com/PaddlePaddle/models/blob/develop/dssm/network_conf.py)中的
`_build_classification_or_regression_model` 函数。
```python
def _build_classification_or_regression_model(self, is_classification):
'''
Build a classification/regression model, and the cost is returned.
A Classification has 3 inputs:
- source sentence
- target sentence
- classification label
'''
# prepare inputs.
assert self.class_num
source = paddle.layer.data(
name='source_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
target = paddle.layer.data(
name='target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
label = paddle.layer.data(
name='label_input',
type=paddle.data_type.integer_value(self.class_num)
if is_classification else paddle.data_type.dense_input)
prefixs = '_ _'.split(
) if self.share_semantic_generator else 'source target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target'.split()
word_vecs = []
for id, input in enumerate([source, target]):
x = self.create_embedding(input, prefix=embed_prefixs[id])
word_vecs.append(x)
semantics = []
for id, input in enumerate(word_vecs):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
if is_classification:
concated_vector = paddle.layer.concat(semantics)
prediction = paddle.layer.fc(
input=concated_vector,
size=self.class_num,
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(
input=prediction, label=label)
else:
prediction = paddle.layer.cos_sim(*semantics)
cost = paddle.layer.square_error_cost(prediction, label)
if not self.is_infer:
return cost, prediction, label
return prediction
```
### Pairwise Rank实现
Pairwise Rank复用上面的DNN结构,同一个source对两个target求相似度打分,
如果左边的target打分高,预测为1,否则预测为 0。
### Pairwise Rank
Pairwise Rank复用上面的DNN结构,同一个source对两个target求相似度打分,如果左边的target打分高,预测为1,否则预测为 0。实现请参考 [network_conf.py]( https://github.com/PaddlePaddle/models/blob/develop/dssm/network_conf.py) 中的`_build_rank_model` 函数。
```python
def _build_rank_model(self):
'''
Build a pairwise rank model, and the cost is returned.
A pairwise rank model has 3 inputs:
- source sentence
- left_target sentence
- right_target sentence
- label, 1 if left_target should be sorted in front of right_target, otherwise 0.
'''
source = paddle.layer.data(
name='source_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
left_target = paddle.layer.data(
name='left_target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
right_target = paddle.layer.data(
name='right_target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
label = paddle.layer.data(
name='label_input', type=paddle.data_type.integer_value(1))
prefixs = '_ _ _'.split(
) if self.share_semantic_generator else 'source target target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target target'.split()
word_vecs = []
for id, input in enumerate([source, left_target, right_target]):
x = self.create_embedding(input, prefix=embed_prefixs[id])
word_vecs.append(x)
semantics = []
for id, input in enumerate(word_vecs):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
# cossim score of source and left_target
left_score = paddle.layer.cos_sim(semantics[0], semantics[1])
# cossim score of source and right target
right_score = paddle.layer.cos_sim(semantics[0], semantics[2])
# rank cost
cost = paddle.layer.rank_cost(left_score, right_score, label=label)
# prediction = left_score - right_score
# but this operator is not supported currently.
# so AUC will not used.
return cost, None, None
```
## 数据格式
`./data` 中有简单的示例数据
......@@ -371,7 +244,6 @@ def _build_rank_model(self):
6 10 \t 8 3 1 \t 1
```
### 排序的数据格式
```
# 4 fields each line:
......@@ -391,68 +263,11 @@ def _build_rank_model(self):
## 执行训练
可以直接执行 `python train.py -y 0 --model_arch 0` 使用 `./data/classification` 目录里简单的数据来训练一个分类的FC模型。
其他模型结构也可以通过命令行实现定制,详细命令行参数如下
可以直接执行 `python train.py -y 0 --model_arch 0` 使用 `./data/classification` 目录里的实例数据来测试能否直接运行训练分类FC模型。
```
usage: train.py [-h] [-i TRAIN_DATA_PATH] [-t TEST_DATA_PATH]
[-s SOURCE_DIC_PATH] [--target_dic_path TARGET_DIC_PATH]
[-b BATCH_SIZE] [-p NUM_PASSES] -y MODEL_TYPE -a MODEL_ARCH
[--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET]
[--share_embed SHARE_EMBED] [--dnn_dims DNN_DIMS]
[--num_workers NUM_WORKERS] [--use_gpu USE_GPU] [-c CLASS_NUM]
[--model_output_prefix MODEL_OUTPUT_PREFIX]
[-g NUM_BATCHES_TO_LOG] [-e NUM_BATCHES_TO_TEST]
[-z NUM_BATCHES_TO_SAVE_MODEL]
PaddlePaddle DSSM example
optional arguments:
-h, --help show this help message and exit
-i TRAIN_DATA_PATH, --train_data_path TRAIN_DATA_PATH
path of training dataset
-t TEST_DATA_PATH, --test_data_path TEST_DATA_PATH
path of testing dataset
-s SOURCE_DIC_PATH, --source_dic_path SOURCE_DIC_PATH
path of the source's word dic
--target_dic_path TARGET_DIC_PATH
path of the target's word dic, if not set, the
`source_dic_path` will be used
-b BATCH_SIZE, --batch_size BATCH_SIZE
size of mini-batch (default:32)
-p NUM_PASSES, --num_passes NUM_PASSES
number of passes to run(default:10)
-y MODEL_TYPE, --model_type MODEL_TYPE
model type, 0 for classification, 1 for pairwise rank,
2 for regression (default: classification)
-a MODEL_ARCH, --model_arch MODEL_ARCH
model architecture, 1 for CNN, 0 for FC, 2 for RNN
--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET
whether to share network parameters between source and
target
--share_embed SHARE_EMBED
whether to share word embedding between source and
target
--dnn_dims DNN_DIMS dimentions of dnn layers, default is '256,128,64,32',
which means create a 4-layer dnn, demention of each
layer is 256, 128, 64 and 32
--num_workers NUM_WORKERS
num worker threads, default 1
--use_gpu USE_GPU whether to use GPU devices (default: False)
-c CLASS_NUM, --class_num CLASS_NUM
number of categories for classification task.
--model_output_prefix MODEL_OUTPUT_PREFIX
prefix of the path for model to store, (default: ./)
-g NUM_BATCHES_TO_LOG, --num_batches_to_log NUM_BATCHES_TO_LOG
number of batches to output train log, (default: 100)
-e NUM_BATCHES_TO_TEST, --num_batches_to_test NUM_BATCHES_TO_TEST
number of batches to test, (default: 200)
-z NUM_BATCHES_TO_SAVE_MODEL, --num_batches_to_save_model NUM_BATCHES_TO_SAVE_MODEL
number of batches to output model, (default: 400)
```
其他模型结构也可以通过命令行实现定制,详细命令行参数请执行 `python train.py --help`进行查阅。
重要的参数描述如下
这里介绍最重要的几个参数:
- `train_data_path` 训练数据路径
- `test_data_path` 测试数据路局,可以不设置
......@@ -462,49 +277,8 @@ optional arguments:
- `model_arch` 模型结构,FC 0, CNN 1, RNN 2
- `dnn_dims` 模型各层的维度设置,默认为 `256,128,64,32`,即模型有4层,各层维度如上设置
## 用训练好的模型预测
```
usage: infer.py [-h] --model_path MODEL_PATH -i DATA_PATH -o
PREDICTION_OUTPUT_PATH -y MODEL_TYPE [-s SOURCE_DIC_PATH]
[--target_dic_path TARGET_DIC_PATH] -a MODEL_ARCH
[--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET]
[--share_embed SHARE_EMBED] [--dnn_dims DNN_DIMS]
[-c CLASS_NUM]
PaddlePaddle DSSM infer
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
path of model parameters file
-i DATA_PATH, --data_path DATA_PATH
path of the dataset to infer
-o PREDICTION_OUTPUT_PATH, --prediction_output_path PREDICTION_OUTPUT_PATH
path to output the prediction
-y MODEL_TYPE, --model_type MODEL_TYPE
model type, 0 for classification, 1 for pairwise rank,
2 for regression (default: classification)
-s SOURCE_DIC_PATH, --source_dic_path SOURCE_DIC_PATH
path of the source's word dic
--target_dic_path TARGET_DIC_PATH
path of the target's word dic, if not set, the
`source_dic_path` will be used
-a MODEL_ARCH, --model_arch MODEL_ARCH
model architecture, 1 for CNN, 0 for FC, 2 for RNN
--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET
whether to share network parameters between source and
target
--share_embed SHARE_EMBED
whether to share word embedding between source and
target
--dnn_dims DNN_DIMS dimentions of dnn layers, default is '256,128,64,32',
which means create a 4-layer dnn, demention of each
layer is 256, 128, 64 and 32
-c CLASS_NUM, --class_num CLASS_NUM
number of categories for classification task.
```
部分参数可以参考 `train.py`,重要参数解释如下
## 使用训练好的模型预测
详细命令行参数请执行 `python train.py --help`进行查阅。重要参数解释如下:
- `data_path` 需要预测的数据路径
- `prediction_output_path` 预测的输出路径
......
......@@ -65,10 +65,11 @@ In below, we describe how to train DSSM model in PaddlePaddle. All the codes are
### Create a word vector table for the text
```python
def create_embedding(self, input, prefix=''):
'''
Create an embedding table whose name has a `prefix`.
'''
logger.info("create embedding table [%s] which dimention is %d" %
"""
Create word embedding. The `prefix` is added in front of the name of
embedding"s learnable parameter.
"""
logger.info("Create embedding table [%s] whose dimention is %d" %
(prefix, self.dnn_dims[0]))
emb = paddle.layer.embedding(
input=input,
......@@ -82,14 +83,15 @@ Since the input (embedding table) is a list of the IDs of the words correspondin
### CNN implementation
```python
def create_cnn(self, emb, prefix=''):
'''
"""
A multi-layer CNN.
:param emb: The word embedding.
:type emb: paddle.layer
:param prefix: The prefix will be added to of layers' names.
:type prefix: str
"""
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between more than one `cnn` parts.
'''
def create_conv(context_len, hidden_size, prefix):
key = "%s_%d_%d" % (prefix, context_len, hidden_size)
conv = paddle.networks.sequence_conv_pool(
......@@ -97,15 +99,13 @@ def create_cnn(self, emb, prefix=''):
context_len=context_len,
hidden_size=hidden_size,
# set parameter attr for parameter sharing
context_proj_param_attr=ParamAttr(name=key + 'contex_proj.w'),
fc_param_attr=ParamAttr(name=key + '_fc.w'),
fc_bias_attr=ParamAttr(name=key + '_fc.b'),
pool_bias_attr=ParamAttr(name=key + '_pool.b'))
context_proj_param_attr=ParamAttr(name=key + "contex_proj.w"),
fc_param_attr=ParamAttr(name=key + "_fc.w"),
fc_bias_attr=ParamAttr(name=key + "_fc.b"),
pool_bias_attr=ParamAttr(name=key + "_pool.b"))
return conv
logger.info('create a sequence_conv_pool which context width is 3')
conv_3 = create_conv(3, self.dnn_dims[1], "cnn")
logger.info('create a sequence_conv_pool which context width is 4')
conv_4 = create_conv(4, self.dnn_dims[1], "cnn")
return conv_3, conv_4
```
......@@ -118,9 +118,9 @@ RNN is suitable for learning variable length of the information
```python
def create_rnn(self, emb, prefix=''):
'''
"""
A GRU sentence vector learner.
'''
"""
gru = paddle.networks.simple_gru(
input=emb,
size=self.dnn_dims[1],
......@@ -136,14 +136,15 @@ def create_rnn(self, emb, prefix=''):
```python
def create_fc(self, emb, prefix=''):
'''
"""
A multi-layer fully connected neural networks.
:param emb: The output of the embedding layer
:type emb: paddle.layer
:param prefix: A prefix will be added to the layers' names.
:type prefix: str
"""
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between more than one `fc` parts.
'''
_input_layer = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
fc = paddle.layer.fc(
......@@ -160,13 +161,10 @@ In the construction of FC, we use `paddle.layer.pooling` for the maximum pooling
```python
def create_dnn(self, sent_vec, prefix):
# if more than three layers exists, a fc layer will be added.
if len(self.dnn_dims) > 1:
_input_layer = sent_vec
for id, dim in enumerate(self.dnn_dims[1:]):
name = "%s_fc_%d_%d" % (prefix, id, dim)
logger.info("create fc layer [%s] which dimention is %d" %
(name, dim))
fc = paddle.layer.fc(
input=_input_layer,
size=dim,
......@@ -180,117 +178,12 @@ def create_dnn(self, sent_vec, prefix):
### Classification / Regression
The structure of classification and regression is similar. Below function can be used for both tasks.
```python
def _build_classification_or_regression_model(self, is_classification):
'''
Build a classification/regression model, and the cost is returned.
A Classification has 3 inputs:
- source sentence
- target sentence
- classification label
'''
# prepare inputs.
assert self.class_num
source = paddle.layer.data(
name='source_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
target = paddle.layer.data(
name='target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
label = paddle.layer.data(
name='label_input',
type=paddle.data_type.integer_value(self.class_num)
if is_classification else paddle.data_type.dense_input)
prefixs = '_ _'.split(
) if self.share_semantic_generator else 'source target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target'.split()
word_vecs = []
for id, input in enumerate([source, target]):
x = self.create_embedding(input, prefix=embed_prefixs[id])
word_vecs.append(x)
semantics = []
for id, input in enumerate(word_vecs):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
if is_classification:
concated_vector = paddle.layer.concat(semantics)
prediction = paddle.layer.fc(
input=concated_vector,
size=self.class_num,
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(
input=prediction, label=label)
else:
prediction = paddle.layer.cos_sim(*semantics)
cost = paddle.layer.square_error_cost(prediction, label)
if not self.is_infer:
return cost, prediction, label
return prediction
```
Please check the function `_build_classification_or_regression_model` in [network_conf.py]( https://github.com/PaddlePaddle/models/blob/develop/dssm/network_conf.py) for detail implementation.
### Pairwise Rank
Please check the function `_build_rank_model` in [network_conf.py]( https://github.com/PaddlePaddle/models/blob/develop/dssm/network_conf.py) for implementation.
```python
def _build_rank_model(self):
'''
Build a pairwise rank model, and the cost is returned.
A pairwise rank model has 3 inputs:
- source sentence
- left_target sentence
- right_target sentence
- label, 1 if left_target should be sorted in front of right_target, otherwise 0.
'''
source = paddle.layer.data(
name='source_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
left_target = paddle.layer.data(
name='left_target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
right_target = paddle.layer.data(
name='right_target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
label = paddle.layer.data(
name='label_input', type=paddle.data_type.integer_value(1))
prefixs = '_ _ _'.split(
) if self.share_semantic_generator else 'source target target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target target'.split()
word_vecs = []
for id, input in enumerate([source, left_target, right_target]):
x = self.create_embedding(input, prefix=embed_prefixs[id])
word_vecs.append(x)
semantics = []
for id, input in enumerate(word_vecs):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
# cossim score of source and left_target
left_score = paddle.layer.cos_sim(semantics[0], semantics[1])
# cossim score of source and right target
right_score = paddle.layer.cos_sim(semantics[0], semantics[2])
# rank cost
cost = paddle.layer.rank_cost(left_score, right_score, label=label)
# prediction = left_score - right_score
# but this operator is not supported currently.
# so AUC will not used.
return cost, None, None
```
## Data Format
Below is a simple example for the data in `./data`
......@@ -347,67 +240,7 @@ The example of this format is as follows.
## Training
We use `python train.py -y 0 --model_arch 0` with the data in `./data/classification` to train a DSSM model for classification.
```
usage: train.py [-h] [-i TRAIN_DATA_PATH] [-t TEST_DATA_PATH]
[-s SOURCE_DIC_PATH] [--target_dic_path TARGET_DIC_PATH]
[-b BATCH_SIZE] [-p NUM_PASSES] -y MODEL_TYPE -a MODEL_ARCH
[--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET]
[--share_embed SHARE_EMBED] [--dnn_dims DNN_DIMS]
[--num_workers NUM_WORKERS] [--use_gpu USE_GPU] [-c CLASS_NUM]
[--model_output_prefix MODEL_OUTPUT_PREFIX]
[-g NUM_BATCHES_TO_LOG] [-e NUM_BATCHES_TO_TEST]
[-z NUM_BATCHES_TO_SAVE_MODEL]
PaddlePaddle DSSM example
optional arguments:
-h, --help show this help message and exit
-i TRAIN_DATA_PATH, --train_data_path TRAIN_DATA_PATH
path of training dataset
-t TEST_DATA_PATH, --test_data_path TEST_DATA_PATH
path of testing dataset
-s SOURCE_DIC_PATH, --source_dic_path SOURCE_DIC_PATH
path of the source's word dic
--target_dic_path TARGET_DIC_PATH
path of the target's word dic, if not set, the
`source_dic_path` will be used
-b BATCH_SIZE, --batch_size BATCH_SIZE
size of mini-batch (default:32)
-p NUM_PASSES, --num_passes NUM_PASSES
number of passes to run(default:10)
-y MODEL_TYPE, --model_type MODEL_TYPE
model type, 0 for classification, 1 for pairwise rank,
2 for regression (default: classification)
-a MODEL_ARCH, --model_arch MODEL_ARCH
model architecture, 1 for CNN, 0 for FC, 2 for RNN
--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET
whether to share network parameters between source and
target
--share_embed SHARE_EMBED
whether to share word embedding between source and
target
--dnn_dims DNN_DIMS dimentions of dnn layers, default is '256,128,64,32',
which means create a 4-layer dnn, demention of each
layer is 256, 128, 64 and 32
--num_workers NUM_WORKERS
num worker threads, default 1
--use_gpu USE_GPU whether to use GPU devices (default: False)
-c CLASS_NUM, --class_num CLASS_NUM
number of categories for classification task.
--model_output_prefix MODEL_OUTPUT_PREFIX
prefix of the path for model to store, (default: ./)
-g NUM_BATCHES_TO_LOG, --num_batches_to_log NUM_BATCHES_TO_LOG
number of batches to output train log, (default: 100)
-e NUM_BATCHES_TO_TEST, --num_batches_to_test NUM_BATCHES_TO_TEST
number of batches to test, (default: 200)
-z NUM_BATCHES_TO_SAVE_MODEL, --num_batches_to_save_model NUM_BATCHES_TO_SAVE_MODEL
number of batches to output model, (default: 400)
```
Parameter description:
We use `python train.py -y 0 --model_arch 0` with the data in `./data/classification` to train a DSSM model for classification. The paremeters to execute the script `train.py` can be found by execution `python infer.py --help`. Some important parameters are:
- `train_data_path` Training data path
- `test_data_path` Test data path, optional
......@@ -418,48 +251,8 @@ Parameter description:
- `dnn_dims` The dimension of each layer of the model is set, the default is `256,128,64,32`,with 4 layers.
## To predict using the trained model
```
usage: infer.py [-h] --model_path MODEL_PATH -i DATA_PATH -o
PREDICTION_OUTPUT_PATH -y MODEL_TYPE [-s SOURCE_DIC_PATH]
[--target_dic_path TARGET_DIC_PATH] -a MODEL_ARCH
[--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET]
[--share_embed SHARE_EMBED] [--dnn_dims DNN_DIMS]
[-c CLASS_NUM]
PaddlePaddle DSSM infer
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
path of model parameters file
-i DATA_PATH, --data_path DATA_PATH
path of the dataset to infer
-o PREDICTION_OUTPUT_PATH, --prediction_output_path PREDICTION_OUTPUT_PATH
path to output the prediction
-y MODEL_TYPE, --model_type MODEL_TYPE
model type, 0 for classification, 1 for pairwise rank,
2 for regression (default: classification)
-s SOURCE_DIC_PATH, --source_dic_path SOURCE_DIC_PATH
path of the source's word dic
--target_dic_path TARGET_DIC_PATH
path of the target's word dic, if not set, the
`source_dic_path` will be used
-a MODEL_ARCH, --model_arch MODEL_ARCH
model architecture, 1 for CNN, 0 for FC, 2 for RNN
--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET
whether to share network parameters between source and
target
--share_embed SHARE_EMBED
whether to share word embedding between source and
target
--dnn_dims DNN_DIMS dimentions of dnn layers, default is '256,128,64,32',
which means create a 4-layer dnn, demention of each
layer is 256, 128, 64 and 32
-c CLASS_NUM, --class_num CLASS_NUM
number of categories for classification task.
```
Important parameters are
The paremeters to execute the script `infer.py` can be found by execution `python infer.py --help`. Some important parameters are:
- `data_path` Path for the data to predict
- `prediction_output_path` Prediction output path
......
......@@ -107,10 +107,11 @@ In below, we describe how to train DSSM model in PaddlePaddle. All the codes are
### Create a word vector table for the text
```python
def create_embedding(self, input, prefix=''):
'''
Create an embedding table whose name has a `prefix`.
'''
logger.info("create embedding table [%s] which dimention is %d" %
"""
Create word embedding. The `prefix` is added in front of the name of
embedding"s learnable parameter.
"""
logger.info("Create embedding table [%s] whose dimention is %d" %
(prefix, self.dnn_dims[0]))
emb = paddle.layer.embedding(
input=input,
......@@ -124,14 +125,15 @@ Since the input (embedding table) is a list of the IDs of the words correspondin
### CNN implementation
```python
def create_cnn(self, emb, prefix=''):
'''
"""
A multi-layer CNN.
:param emb: The word embedding.
:type emb: paddle.layer
:param prefix: The prefix will be added to of layers' names.
:type prefix: str
"""
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between more than one `cnn` parts.
'''
def create_conv(context_len, hidden_size, prefix):
key = "%s_%d_%d" % (prefix, context_len, hidden_size)
conv = paddle.networks.sequence_conv_pool(
......@@ -139,15 +141,13 @@ def create_cnn(self, emb, prefix=''):
context_len=context_len,
hidden_size=hidden_size,
# set parameter attr for parameter sharing
context_proj_param_attr=ParamAttr(name=key + 'contex_proj.w'),
fc_param_attr=ParamAttr(name=key + '_fc.w'),
fc_bias_attr=ParamAttr(name=key + '_fc.b'),
pool_bias_attr=ParamAttr(name=key + '_pool.b'))
context_proj_param_attr=ParamAttr(name=key + "contex_proj.w"),
fc_param_attr=ParamAttr(name=key + "_fc.w"),
fc_bias_attr=ParamAttr(name=key + "_fc.b"),
pool_bias_attr=ParamAttr(name=key + "_pool.b"))
return conv
logger.info('create a sequence_conv_pool which context width is 3')
conv_3 = create_conv(3, self.dnn_dims[1], "cnn")
logger.info('create a sequence_conv_pool which context width is 4')
conv_4 = create_conv(4, self.dnn_dims[1], "cnn")
return conv_3, conv_4
```
......@@ -160,9 +160,9 @@ RNN is suitable for learning variable length of the information
```python
def create_rnn(self, emb, prefix=''):
'''
"""
A GRU sentence vector learner.
'''
"""
gru = paddle.networks.simple_gru(
input=emb,
size=self.dnn_dims[1],
......@@ -178,14 +178,15 @@ def create_rnn(self, emb, prefix=''):
```python
def create_fc(self, emb, prefix=''):
'''
"""
A multi-layer fully connected neural networks.
:param emb: The output of the embedding layer
:type emb: paddle.layer
:param prefix: A prefix will be added to the layers' names.
:type prefix: str
"""
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between more than one `fc` parts.
'''
_input_layer = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
fc = paddle.layer.fc(
......@@ -202,13 +203,10 @@ In the construction of FC, we use `paddle.layer.pooling` for the maximum pooling
```python
def create_dnn(self, sent_vec, prefix):
# if more than three layers exists, a fc layer will be added.
if len(self.dnn_dims) > 1:
_input_layer = sent_vec
for id, dim in enumerate(self.dnn_dims[1:]):
name = "%s_fc_%d_%d" % (prefix, id, dim)
logger.info("create fc layer [%s] which dimention is %d" %
(name, dim))
fc = paddle.layer.fc(
input=_input_layer,
size=dim,
......@@ -222,117 +220,12 @@ def create_dnn(self, sent_vec, prefix):
### Classification / Regression
The structure of classification and regression is similar. Below function can be used for both tasks.
```python
def _build_classification_or_regression_model(self, is_classification):
'''
Build a classification/regression model, and the cost is returned.
A Classification has 3 inputs:
- source sentence
- target sentence
- classification label
'''
# prepare inputs.
assert self.class_num
source = paddle.layer.data(
name='source_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
target = paddle.layer.data(
name='target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
label = paddle.layer.data(
name='label_input',
type=paddle.data_type.integer_value(self.class_num)
if is_classification else paddle.data_type.dense_input)
prefixs = '_ _'.split(
) if self.share_semantic_generator else 'source target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target'.split()
word_vecs = []
for id, input in enumerate([source, target]):
x = self.create_embedding(input, prefix=embed_prefixs[id])
word_vecs.append(x)
semantics = []
for id, input in enumerate(word_vecs):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
if is_classification:
concated_vector = paddle.layer.concat(semantics)
prediction = paddle.layer.fc(
input=concated_vector,
size=self.class_num,
act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(
input=prediction, label=label)
else:
prediction = paddle.layer.cos_sim(*semantics)
cost = paddle.layer.square_error_cost(prediction, label)
if not self.is_infer:
return cost, prediction, label
return prediction
```
Please check the function `_build_classification_or_regression_model` in [network_conf.py]( https://github.com/PaddlePaddle/models/blob/develop/dssm/network_conf.py) for detail implementation.
### Pairwise Rank
Please check the function `_build_rank_model` in [network_conf.py]( https://github.com/PaddlePaddle/models/blob/develop/dssm/network_conf.py) for implementation.
```python
def _build_rank_model(self):
'''
Build a pairwise rank model, and the cost is returned.
A pairwise rank model has 3 inputs:
- source sentence
- left_target sentence
- right_target sentence
- label, 1 if left_target should be sorted in front of right_target, otherwise 0.
'''
source = paddle.layer.data(
name='source_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
left_target = paddle.layer.data(
name='left_target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
right_target = paddle.layer.data(
name='right_target_input',
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
label = paddle.layer.data(
name='label_input', type=paddle.data_type.integer_value(1))
prefixs = '_ _ _'.split(
) if self.share_semantic_generator else 'source target target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target target'.split()
word_vecs = []
for id, input in enumerate([source, left_target, right_target]):
x = self.create_embedding(input, prefix=embed_prefixs[id])
word_vecs.append(x)
semantics = []
for id, input in enumerate(word_vecs):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
# cossim score of source and left_target
left_score = paddle.layer.cos_sim(semantics[0], semantics[1])
# cossim score of source and right target
right_score = paddle.layer.cos_sim(semantics[0], semantics[2])
# rank cost
cost = paddle.layer.rank_cost(left_score, right_score, label=label)
# prediction = left_score - right_score
# but this operator is not supported currently.
# so AUC will not used.
return cost, None, None
```
## Data Format
Below is a simple example for the data in `./data`
......@@ -389,67 +282,7 @@ The example of this format is as follows.
## Training
We use `python train.py -y 0 --model_arch 0` with the data in `./data/classification` to train a DSSM model for classification.
```
usage: train.py [-h] [-i TRAIN_DATA_PATH] [-t TEST_DATA_PATH]
[-s SOURCE_DIC_PATH] [--target_dic_path TARGET_DIC_PATH]
[-b BATCH_SIZE] [-p NUM_PASSES] -y MODEL_TYPE -a MODEL_ARCH
[--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET]
[--share_embed SHARE_EMBED] [--dnn_dims DNN_DIMS]
[--num_workers NUM_WORKERS] [--use_gpu USE_GPU] [-c CLASS_NUM]
[--model_output_prefix MODEL_OUTPUT_PREFIX]
[-g NUM_BATCHES_TO_LOG] [-e NUM_BATCHES_TO_TEST]
[-z NUM_BATCHES_TO_SAVE_MODEL]
PaddlePaddle DSSM example
optional arguments:
-h, --help show this help message and exit
-i TRAIN_DATA_PATH, --train_data_path TRAIN_DATA_PATH
path of training dataset
-t TEST_DATA_PATH, --test_data_path TEST_DATA_PATH
path of testing dataset
-s SOURCE_DIC_PATH, --source_dic_path SOURCE_DIC_PATH
path of the source's word dic
--target_dic_path TARGET_DIC_PATH
path of the target's word dic, if not set, the
`source_dic_path` will be used
-b BATCH_SIZE, --batch_size BATCH_SIZE
size of mini-batch (default:32)
-p NUM_PASSES, --num_passes NUM_PASSES
number of passes to run(default:10)
-y MODEL_TYPE, --model_type MODEL_TYPE
model type, 0 for classification, 1 for pairwise rank,
2 for regression (default: classification)
-a MODEL_ARCH, --model_arch MODEL_ARCH
model architecture, 1 for CNN, 0 for FC, 2 for RNN
--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET
whether to share network parameters between source and
target
--share_embed SHARE_EMBED
whether to share word embedding between source and
target
--dnn_dims DNN_DIMS dimentions of dnn layers, default is '256,128,64,32',
which means create a 4-layer dnn, demention of each
layer is 256, 128, 64 and 32
--num_workers NUM_WORKERS
num worker threads, default 1
--use_gpu USE_GPU whether to use GPU devices (default: False)
-c CLASS_NUM, --class_num CLASS_NUM
number of categories for classification task.
--model_output_prefix MODEL_OUTPUT_PREFIX
prefix of the path for model to store, (default: ./)
-g NUM_BATCHES_TO_LOG, --num_batches_to_log NUM_BATCHES_TO_LOG
number of batches to output train log, (default: 100)
-e NUM_BATCHES_TO_TEST, --num_batches_to_test NUM_BATCHES_TO_TEST
number of batches to test, (default: 200)
-z NUM_BATCHES_TO_SAVE_MODEL, --num_batches_to_save_model NUM_BATCHES_TO_SAVE_MODEL
number of batches to output model, (default: 400)
```
Parameter description:
We use `python train.py -y 0 --model_arch 0` with the data in `./data/classification` to train a DSSM model for classification. The paremeters to execute the script `train.py` can be found by execution `python infer.py --help`. Some important parameters are:
- `train_data_path` Training data path
- `test_data_path` Test data path, optional
......@@ -460,48 +293,8 @@ Parameter description:
- `dnn_dims` The dimension of each layer of the model is set, the default is `256,128,64,32`,with 4 layers.
## To predict using the trained model
```
usage: infer.py [-h] --model_path MODEL_PATH -i DATA_PATH -o
PREDICTION_OUTPUT_PATH -y MODEL_TYPE [-s SOURCE_DIC_PATH]
[--target_dic_path TARGET_DIC_PATH] -a MODEL_ARCH
[--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET]
[--share_embed SHARE_EMBED] [--dnn_dims DNN_DIMS]
[-c CLASS_NUM]
PaddlePaddle DSSM infer
optional arguments:
-h, --help show this help message and exit
--model_path MODEL_PATH
path of model parameters file
-i DATA_PATH, --data_path DATA_PATH
path of the dataset to infer
-o PREDICTION_OUTPUT_PATH, --prediction_output_path PREDICTION_OUTPUT_PATH
path to output the prediction
-y MODEL_TYPE, --model_type MODEL_TYPE
model type, 0 for classification, 1 for pairwise rank,
2 for regression (default: classification)
-s SOURCE_DIC_PATH, --source_dic_path SOURCE_DIC_PATH
path of the source's word dic
--target_dic_path TARGET_DIC_PATH
path of the target's word dic, if not set, the
`source_dic_path` will be used
-a MODEL_ARCH, --model_arch MODEL_ARCH
model architecture, 1 for CNN, 0 for FC, 2 for RNN
--share_network_between_source_target SHARE_NETWORK_BETWEEN_SOURCE_TARGET
whether to share network parameters between source and
target
--share_embed SHARE_EMBED
whether to share word embedding between source and
target
--dnn_dims DNN_DIMS dimentions of dnn layers, default is '256,128,64,32',
which means create a 4-layer dnn, demention of each
layer is 256, 128, 64 and 32
-c CLASS_NUM, --class_num CLASS_NUM
number of categories for classification task.
```
Important parameters are
The paremeters to execute the script `infer.py` can be found by execution `python infer.py --help`. Some important parameters are:
- `data_path` Path for the data to predict
- `prediction_output_path` Prediction output path
......
......@@ -9,30 +9,27 @@ from utils import logger, ModelType, ModelArch, load_dic
parser = argparse.ArgumentParser(description="PaddlePaddle DSSM infer")
parser.add_argument(
"--model_path",
type=str,
required=True,
help="path of model parameters file")
"--model_path", type=str, required=True, help="The path of trained model.")
parser.add_argument(
"-i",
"--data_path",
type=str,
required=True,
help="path of the dataset to infer")
help="The path of the data for inferring.")
parser.add_argument(
"-o",
"--prediction_output_path",
type=str,
required=True,
help="path to output the prediction")
help="The path to save the predictions.")
parser.add_argument(
"-y",
"--model_type",
type=int,
required=True,
default=ModelType.CLASSIFICATION_MODE,
help=("model type, %d for classification, %d for pairwise rank, "
"%d for regression (default: classification)") %
help=("The model type: %d for classification, %d for pairwise rank, "
"%d for regression (default: classification).") %
(ModelType.CLASSIFICATION_MODE, ModelType.RANK_MODE,
ModelType.REGRESSION_MODE))
parser.add_argument(
......@@ -40,13 +37,13 @@ parser.add_argument(
"--source_dic_path",
type=str,
required=False,
help="path of the source's word dic")
help="The path of the source's word dictionary.")
parser.add_argument(
"--target_dic_path",
type=str,
required=False,
help=("path of the target's word dictionary, "
"if not set, the `source_dic_path` will be used"))
help=("The path of the target's word dictionary, "
"if this parameter is not set, the `source_dic_path` will be used."))
parser.add_argument(
"-a",
"--model_arch",
......@@ -69,15 +66,15 @@ parser.add_argument(
"--dnn_dims",
type=str,
default="256,128,64,32",
help=("dimentions of dnn layers, default is `256,128,64,32`, "
"which means create a 4-layer dnn, "
"demention of each layer is 256, 128, 64 and 32"))
help=("The dimentions of dnn layers, default is `256,128,64,32`, "
"which means a dnn with 4 layers with "
"dmentions 256, 128, 64 and 32 will be created."))
parser.add_argument(
"-c",
"--class_num",
type=int,
default=0,
help="number of categories for classification task.")
help="The number of categories for classification task.")
args = parser.parse_args()
args.model_type = ModelType(args.model_type)
......
......@@ -9,120 +9,129 @@ from utils import TaskType, load_dic, logger, ModelType, ModelArch, display_args
parser = argparse.ArgumentParser(description="PaddlePaddle DSSM example")
parser.add_argument(
'-i',
'--train_data_path',
"-i",
"--train_data_path",
type=str,
required=False,
help="path of training dataset")
help="The path of training data.")
parser.add_argument(
'-t',
'--test_data_path',
"-t",
"--test_data_path",
type=str,
required=False,
help="path of testing dataset")
help="The path of testing data.")
parser.add_argument(
'-s',
'--source_dic_path',
"-s",
"--source_dic_path",
type=str,
required=False,
help="path of the source's word dic")
help="The path of the source's word dictionary.")
parser.add_argument(
'--target_dic_path',
"--target_dic_path",
type=str,
required=False,
help=("path of the target's word dictionary, "
"if not set, the `source_dic_path` will be used"))
help=("The path of the target's word dictionary, "
"if this parameter is not set, the `source_dic_path` will be used"))
parser.add_argument(
'-b',
'--batch_size',
"-b",
"--batch_size",
type=int,
default=32,
help="size of mini-batch (default:32)")
help="The size of mini-batch (default:32).")
parser.add_argument(
'-p',
'--num_passes',
"-p",
"--num_passes",
type=int,
default=10,
help="number of passes to run(default:10)")
help="The number of passes to run(default:10).")
parser.add_argument(
'-y',
'--model_type',
"-y",
"--model_type",
type=int,
required=True,
default=ModelType.CLASSIFICATION_MODE,
help="model type, %d for classification, %d for pairwise rank, %d for regression (default: classification)"
% (ModelType.CLASSIFICATION_MODE, ModelType.RANK_MODE,
help=("model type, %d for classification, %d for pairwise rank, "
"%d for regression (default: classification).") %
(ModelType.CLASSIFICATION_MODE, ModelType.RANK_MODE,
ModelType.REGRESSION_MODE))
parser.add_argument(
'-a',
'--model_arch',
"-a",
"--model_arch",
type=int,
required=True,
default=ModelArch.CNN_MODE,
help="model architecture, %d for CNN, %d for FC, %d for RNN" %
help="The model architecture, %d for CNN, %d for FC, %d for RNN." %
(ModelArch.CNN_MODE, ModelArch.FC_MODE, ModelArch.RNN_MODE))
parser.add_argument(
'--share_network_between_source_target',
"--share_network_between_source_target",
type=distutils.util.strtobool,
default=False,
help="whether to share network parameters between source and target")
help="Whether to share network parameters between source and target.")
parser.add_argument(
'--share_embed',
"--share_embed",
type=distutils.util.strtobool,
default=False,
help="whether to share word embedding between source and target")
help="Whether to share word embedding between source and target.")
parser.add_argument(
'--dnn_dims',
"--dnn_dims",
type=str,
default='256,128,64,32',
help="dimentions of dnn layers, default is '256,128,64,32', which means create a 4-layer dnn, demention of each layer is 256, 128, 64 and 32"
)
default="256,128,64,32",
help=("The dimentions of dnn layers, default is '256,128,64,32', "
"which means create a 4-layer dnn. The dimention of each layer is "
"'256, 128, 64 and 32'."))
parser.add_argument(
'--num_workers', type=int, default=1, help="num worker threads, default 1")
"--num_workers",
type=int,
default=1,
help="The number of worker threads, default 1.")
parser.add_argument(
'--use_gpu',
"--use_gpu",
type=distutils.util.strtobool,
default=False,
help="whether to use GPU devices (default: False)")
help="Whether to use GPU devices (default: False)")
parser.add_argument(
'-c',
'--class_num',
"-c",
"--class_num",
type=int,
default=0,
help="number of categories for classification task.")
help="The number of categories for classification task.")
parser.add_argument(
'--model_output_prefix',
"--model_output_prefix",
type=str,
default="./",
help="prefix of the path for model to store, (default: ./)")
help="The prefix of the path to store the trained models (default: ./).")
parser.add_argument(
'-g',
'--num_batches_to_log',
"-g",
"--num_batches_to_log",
type=int,
default=100,
help="number of batches to output train log, (default: 100)")
help=("The log period. Every num_batches_to_test batches, "
"a training log will be printed. (default: 100)"))
parser.add_argument(
'-e',
'--num_batches_to_test',
"-e",
"--num_batches_to_test",
type=int,
default=200,
help="number of batches to test, (default: 200)")
help=("The test period. Every num_batches_to_save_model batches, "
"the specified test sample will be test (default: 200)."))
parser.add_argument(
'-z',
'--num_batches_to_save_model',
"-z",
"--num_batches_to_save_model",
type=int,
default=400,
help="number of batches to output model, (default: 400)")
help=("Every num_batches_to_save_model batches, "
"a trained model will be saved (default: 400)."))
# arguments check.
args = parser.parse_args()
args.model_type = ModelType(args.model_type)
args.model_arch = ModelArch(args.model_arch)
if args.model_type.is_classification():
assert args.class_num > 1, "--class_num should be set in classification task."
assert args.class_num > 1, ("The parameter class_num should be set in "
"classification task.")
layer_dims = [int(i) for i in args.dnn_dims.split(',')]
args.target_dic_path = args.source_dic_path if not args.target_dic_path else args.target_dic_path
layer_dims = [int(i) for i in args.dnn_dims.split(",")]
args.target_dic_path = args.source_dic_path if not \
args.target_dic_path else args.target_dic_path
def train(train_data_path=None,
......@@ -138,15 +147,15 @@ def train(train_data_path=None,
class_num=None,
num_workers=1,
use_gpu=False):
'''
"""
Train the DSSM.
'''
default_train_path = './data/rank/train.txt'
default_test_path = './data/rank/test.txt'
default_dic_path = './data/vocab.txt'
"""
default_train_path = "./data/rank/train.txt"
default_test_path = "./data/rank/test.txt"
default_dic_path = "./data/vocab.txt"
if not model_type.is_rank():
default_train_path = './data/classification/train.txt'
default_test_path = './data/classification/test.txt'
default_train_path = "./data/classification/train.txt"
default_test_path = "./data/classification/test.txt"
use_default_data = not train_data_path
......@@ -200,19 +209,19 @@ def train(train_data_path=None,
feeding = {}
if model_type.is_classification() or model_type.is_regression():
feeding = {'source_input': 0, 'target_input': 1, 'label_input': 2}
feeding = {"source_input": 0, "target_input": 1, "label_input": 2}
else:
feeding = {
'source_input': 0,
'left_target_input': 1,
'right_target_input': 2,
'label_input': 3
"source_input": 0,
"left_target_input": 1,
"right_target_input": 2,
"label_input": 3
}
def _event_handler(event):
'''
"""
Define batch handler
'''
"""
if isinstance(event, paddle.event.EndIteration):
# output train log
if event.batch_id % args.num_batches_to_log == 0:
......@@ -249,7 +258,7 @@ def train(train_data_path=None,
logger.info("Training has finished.")
if __name__ == '__main__':
if __name__ == "__main__":
display_args(args)
train(
train_data_path=args.train_data_path,
......
......@@ -8,7 +8,7 @@ logger.setLevel(logging.INFO)
def mode_attr_name(mode):
return mode.upper() + '_MODE'
return mode.upper() + "_MODE"
def create_attrs(cls):
......@@ -17,9 +17,9 @@ def create_attrs(cls):
def make_check_method(cls):
'''
"""
create methods for classes.
'''
"""
def method(mode):
def _method(self):
......@@ -28,7 +28,7 @@ def make_check_method(cls):
return _method
for id, mode in enumerate(cls.modes):
setattr(cls, 'is_' + mode, method(mode))
setattr(cls, "is_" + mode, method(mode))
def make_create_method(cls):
......@@ -41,10 +41,10 @@ def make_create_method(cls):
return _method
for id, mode in enumerate(cls.modes):
setattr(cls, 'create_' + mode, method(mode))
setattr(cls, "create_" + mode, method(mode))
def make_str_method(cls, type_name='unk'):
def make_str_method(cls, type_name="unk"):
def _str_(self):
for mode in cls.modes:
if self.mode == getattr(cls, mode_attr_name(mode)):
......@@ -53,9 +53,9 @@ def make_str_method(cls, type_name='unk'):
def _hash_(self):
return self.mode
setattr(cls, '__str__', _str_)
setattr(cls, '__repr__', _str_)
setattr(cls, '__hash__', _hash_)
setattr(cls, "__str__", _str_)
setattr(cls, "__repr__", _str_)
setattr(cls, "__hash__", _hash_)
cls.__name__ = type_name
......@@ -65,7 +65,7 @@ def _init_(self, mode, cls):
elif isinstance(mode, cls):
self.mode = mode.mode
else:
raise Exception("wrong mode type, get type: %s, value: %s" %
raise Exception("A wrong mode type, get type: %s, value: %s." %
(type(mode), mode))
......@@ -77,21 +77,21 @@ def build_mode_class(cls):
class TaskType(object):
modes = 'train test infer'.split()
modes = "train test infer".split()
def __init__(self, mode):
_init_(self, mode, TaskType)
class ModelType:
modes = 'classification rank regression'.split()
modes = "classification rank regression".split()
def __init__(self, mode):
_init_(self, mode, ModelType)
class ModelArch:
modes = 'fc cnn rnn'.split()
modes = "fc cnn rnn".split()
def __init__(self, mode):
_init_(self, mode, ModelArch)
......@@ -103,22 +103,16 @@ build_mode_class(ModelArch)
def sent2ids(sent, vocab):
'''
"""
transform a sentence to a list of ids.
@sent: str
a sentence.
@vocab: dict
a word dic
'''
"""
return [vocab.get(w, UNK) for w in sent.split()]
def load_dic(path):
'''
word dic format:
each line is a word
'''
"""
The format of word dictionary : each line is a word.
"""
dic = {}
with open(path) as f:
for id, line in enumerate(f):
......@@ -128,13 +122,6 @@ def load_dic(path):
def display_args(args):
logger.info("arguments passed by command line:")
logger.info("The arguments passed by command line is :")
for k, v in sorted(v for v in vars(args).items()):
logger.info("{}:\t{}".format(k, v))
if __name__ == '__main__':
t = TaskType(1)
t = TaskType.create_train()
print t
print 'is', t.is_train()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册