Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
ada40967
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ada40967
编写于
6月 19, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Follow comments.
上级
0322d752
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
14 addition
and
12 deletion
+14
-12
deep_speech_2/error_rate.py
deep_speech_2/error_rate.py
+12
-6
deep_speech_2/tests/test_error_rate.py
deep_speech_2/tests/test_error_rate.py
+2
-6
未找到文件。
deep_speech_2/error_rate.py
浏览文件 @
ada40967
...
...
@@ -2,14 +2,20 @@
"""This module provides functions to calculate error rate in different level.
e.g. wer for word-level, cer for char-level.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
def
levenshtein_distance
(
ref
,
hyp
):
def
_levenshtein_distance
(
ref
,
hyp
):
"""Levenshtein distance is a string metric for measuring the difference between
two sequences. Informally, the levenshtein disctance is defined as the minimum
number of single-character edits (substitutions, insertions or deletions)
required to change one word into the other. We can naturally extend the edits to
word level when calculate levenshtein disctance for two sentences.
"""
ref_len
=
len
(
ref
)
hyp_len
=
len
(
hyp
)
...
...
@@ -72,7 +78,7 @@ def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
:type delimiter: char
:return: Word error rate.
:rtype: float
:raises ValueError: If reference length is zero.
:raises ValueError: If
the
reference length is zero.
"""
if
ignore_case
==
True
:
reference
=
reference
.
lower
()
...
...
@@ -84,7 +90,7 @@ def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
if
len
(
ref_words
)
==
0
:
raise
ValueError
(
"Reference's word number should be greater than 0."
)
edit_distance
=
levenshtein_distance
(
ref_words
,
hyp_words
)
edit_distance
=
_
levenshtein_distance
(
ref_words
,
hyp_words
)
wer
=
float
(
edit_distance
)
/
len
(
ref_words
)
return
wer
...
...
@@ -118,7 +124,7 @@ def cer(reference, hypothesis, ignore_case=False):
:type ignore_case: bool
:return: Character error rate.
:rtype: float
:raises ValueError: If reference length is zero.
:raises ValueError: If
the
reference length is zero.
"""
if
ignore_case
==
True
:
reference
=
reference
.
lower
()
...
...
@@ -130,6 +136,6 @@ def cer(reference, hypothesis, ignore_case=False):
if
len
(
reference
)
==
0
:
raise
ValueError
(
"Length of reference should be greater than 0."
)
edit_distance
=
levenshtein_distance
(
reference
,
hypothesis
)
edit_distance
=
_
levenshtein_distance
(
reference
,
hypothesis
)
cer
=
float
(
edit_distance
)
/
len
(
reference
)
return
cer
deep_speech_2/tests/test_error_rate.py
浏览文件 @
ada40967
...
...
@@ -23,10 +23,8 @@ class TestParse(unittest.TestCase):
def
test_wer_3
(
self
):
ref
=
' '
hyp
=
'Hypothesis sentence'
try
:
with
self
.
assertRaises
(
ValueError
)
:
word_error_rate
=
error_rate
.
wer
(
ref
,
hyp
)
except
Exception
as
e
:
self
.
assertTrue
(
isinstance
(
e
,
ValueError
))
def
test_cer_1
(
self
):
ref
=
'werewolf'
...
...
@@ -53,10 +51,8 @@ class TestParse(unittest.TestCase):
def
test_cer_5
(
self
):
ref
=
''
hyp
=
'Hypothesis'
try
:
with
self
.
assertRaises
(
ValueError
)
:
char_error_rate
=
error_rate
.
cer
(
ref
,
hyp
)
except
Exception
as
e
:
self
.
assertTrue
(
isinstance
(
e
,
ValueError
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录