Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
ac8e256f
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ac8e256f
编写于
3月 22, 2020
作者:
littletomatodonkey
提交者:
GitHub
3月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix cls doc (#4454)
* fix cls doc * del dead link * fix develop link * add autodl link
上级
35931852
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
23 addition
and
17 deletion
+23
-17
PaddleCV/README.md
PaddleCV/README.md
+23
-17
未找到文件。
PaddleCV/README.md
浏览文件 @
ac8e256f
...
...
@@ -6,23 +6,29 @@ PaddleCV
图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉中重要的基础问题,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层视觉任务的基础,在许多领域都有着广泛的应用。如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。
在深度学习时代,图像分类的准确率大幅度提升,在图像分类任务中,我们向大家介绍了如何在经典的数据集ImageNet上,训练常用的模型,包括AlexNet、VGG系列、ResNet系列、ResNeXt系列、Inception系列、MobileNet系列、SENet系列、DarkNet、SqueezeNet、ShuffleNet系列等模型,也开源了
[
训练的模型
](
https://github.com/PaddlePaddle/models/blob/release/1.7/PaddleCV/image_classification/README.md#已有模型及其性能
)
方便用户下载使用。同时提供了能够将Caffe模型转换为PaddlePaddle
Fluid模型配置和参数文件的工具。
-
[
AlexNet
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
SqueezeNet
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
VGG Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
GoogleNet
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
ResNet Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
ResNeXt Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
ShuffleNet Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
DenseNet Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
Inception Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
MobileNet Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
SENet Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
DarkNet
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
ResNeXt101_wsl Series
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/image_classification/models
)
-
[
Caffe模型转换为Paddle Fluid配置和模型文件工具
](
https://github.com/PaddlePaddle/models/tree/release/1.7/PaddleCV/caffe2fluid
)
在深度学习时代,图像分类的准确率大幅度提升,在图像分类任务中,我们向大家介绍了如何在经典的数据集ImageNet上,训练常用的模型,包括AlexNet、VGG、ResNet、ResNeXt、Inception、MobileNet、SENet、DarkNet、SqueezeNet、ShuffleNet、Res2Net、DenseNet、DPN、EfficientNet、HRNet、AutoDL、ResNet-ACNet等系列模型,也开源了共105个
[
预训练模型
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/image_classification/README.md#已发布模型及其性能
)
方便用户下载使用。
-
[
AlexNet
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
SqueezeNet
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
VGG Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
GoogleNet
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
ResNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
ResNeXt Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
ShuffleNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
DenseNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
Inception Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
MobileNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
SENet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
DarkNet
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
ResNeXt101_wsl Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
Res2Net Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
DenseNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
DPN Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
EfficientNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
HRNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
AutoDL Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
-
[
ResNet-ACNet Series
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification/models
)
目标检测
--------
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录