Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
a96c6509
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a96c6509
编写于
8月 23, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor scorer and move utility functions to decoder_util.h
上级
32047c72
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
154 addition
and
137 deletion
+154
-137
deep_speech_2/deploy/README.md
deep_speech_2/deploy/README.md
+2
-0
deep_speech_2/deploy/ctc_decoders.cpp
deep_speech_2/deploy/ctc_decoders.cpp
+0
-23
deep_speech_2/deploy/decoder_utils.cpp
deep_speech_2/deploy/decoder_utils.cpp
+7
-0
deep_speech_2/deploy/decoder_utils.h
deep_speech_2/deploy/decoder_utils.h
+25
-8
deep_speech_2/deploy/decoders.i
deep_speech_2/deploy/decoders.i
+7
-2
deep_speech_2/deploy/scorer.cpp
deep_speech_2/deploy/scorer.cpp
+67
-81
deep_speech_2/deploy/scorer.h
deep_speech_2/deploy/scorer.h
+46
-23
未找到文件。
deep_speech_2/deploy/README.md
浏览文件 @
a96c6509
...
...
@@ -7,6 +7,8 @@ wget http://www.openfst.org/twiki/pub/FST/FstDownload/openfst-1.6.3.tar.gz
tar
-xzvf
openfst-1.6.3.tar.gz
```
Compiling for python interface requires swig, please make sure swig being installed.
Then run the setup
```
shell
...
...
deep_speech_2/deploy/ctc_decoders.cpp
浏览文件 @
a96c6509
...
...
@@ -9,29 +9,6 @@
typedef
double
log_prob_type
;
template
<
typename
T1
,
typename
T2
>
bool
pair_comp_first_rev
(
const
std
::
pair
<
T1
,
T2
>
a
,
const
std
::
pair
<
T1
,
T2
>
b
)
{
return
a
.
first
>
b
.
first
;
}
template
<
typename
T1
,
typename
T2
>
bool
pair_comp_second_rev
(
const
std
::
pair
<
T1
,
T2
>
a
,
const
std
::
pair
<
T1
,
T2
>
b
)
{
return
a
.
second
>
b
.
second
;
}
template
<
typename
T
>
T
log_sum_exp
(
T
x
,
T
y
)
{
static
T
num_min
=
-
std
::
numeric_limits
<
T
>::
max
();
if
(
x
<=
num_min
)
return
y
;
if
(
y
<=
num_min
)
return
x
;
T
xmax
=
std
::
max
(
x
,
y
);
return
std
::
log
(
std
::
exp
(
x
-
xmax
)
+
std
::
exp
(
y
-
xmax
))
+
xmax
;
}
std
::
string
ctc_best_path_decoder
(
std
::
vector
<
std
::
vector
<
double
>
>
probs_seq
,
std
::
vector
<
std
::
string
>
vocabulary
)
{
// dimension check
...
...
deep_speech_2/deploy/decoder_utils.cpp
浏览文件 @
a96c6509
...
...
@@ -3,3 +3,10 @@
#include <cmath>
#include "decoder_utils.h"
size_t
get_utf8_str_len
(
const
std
::
string
&
str
)
{
size_t
str_len
=
0
;
for
(
char
c
:
str
)
{
str_len
+=
((
c
&
0xc0
)
!=
0x80
);
}
return
str_len
;
}
deep_speech_2/deploy/decoder_utils.h
浏览文件 @
a96c6509
#ifndef DECODER_UTILS_H
#define DECODER_UTILS_H
#pragma once
#ifndef DECODER_UTILS_H
_
#define DECODER_UTILS_H
_
#include <utility>
/*
template
<
typename
T1
,
typename
T2
>
bool pair_comp_first_rev(const std::pair<T1, T2> a, const std::pair<T1, T2> b);
bool
pair_comp_first_rev
(
const
std
::
pair
<
T1
,
T2
>
&
a
,
const
std
::
pair
<
T1
,
T2
>
&
b
)
{
return
a
.
first
>
b
.
first
;
}
template
<
typename
T1
,
typename
T2
>
bool pair_comp_second_rev(const std::pair<T1, T2> a, const std::pair<T1, T2> b);
bool
pair_comp_second_rev
(
const
std
::
pair
<
T1
,
T2
>
&
a
,
const
std
::
pair
<
T1
,
T2
>
&
b
)
{
return
a
.
second
>
b
.
second
;
}
template
<
typename
T
>
T
log_sum_exp
(
const
T
&
x
,
const
T
&
y
)
{
static
T
num_min
=
-
std
::
numeric_limits
<
T
>::
max
();
if
(
x
<=
num_min
)
return
y
;
if
(
y
<=
num_min
)
return
x
;
T
xmax
=
std
::
max
(
x
,
y
);
return
std
::
log
(
std
::
exp
(
x
-
xmax
)
+
std
::
exp
(
y
-
xmax
))
+
xmax
;
}
// Get length of utf8 encoding string
// See: http://stackoverflow.com/a/4063229
size_t
get_utf8_str_len
(
const
std
::
string
&
str
);
template <typename T> T log_sum_exp(T x, T y);
*/
#endif // DECODER_UTILS_H
deep_speech_2/deploy/decoders.i
浏览文件 @
a96c6509
...
...
@@ -2,13 +2,15 @@
%
{
#
include
"scorer.h"
#
include
"ctc_decoders.h"
#
include
"decoder_utils.h"
%
}
%
include
"std_vector.i"
%
include
"std_pair.i"
%
include
"std_string.i"
%
import
"decoder_utils.h"
namespace
std{
namespace
std
{
%
template
(
DoubleVector
)
std
::
vector
<
double
>
;
%
template
(
IntVector
)
std
::
vector
<
int
>
;
%
template
(
StringVector
)
std
::
vector
<
std
::
string
>
;
...
...
@@ -19,6 +21,9 @@ namespace std{
%
template
(
PairDoubleStringVector
)
std
::
vector
<
std
::
pair
<
double
,
std
::
string
>
>
;
}
%
import
decoder_utils
.
h
%
template
(
IntDoublePairCompSecondRev
)
pair_comp_second_rev
<
int
,
double
>
;
%
template
(
StringDoublePairCompSecondRev
)
pair_comp_second_rev
<
std
::
string
,
double
>
;
%
template
(
DoubleStringPairCompFirstRev
)
pair_comp_first_rev
<
double
,
std
::
string
>
;
%
include
"scorer.h"
%
include
"ctc_decoders.h"
deep_speech_2/deploy/scorer.cpp
浏览文件 @
a96c6509
#include <iostream>
#include <unistd.h>
#include "scorer.h"
#include "lm/model.hh"
#include "util/tokenize_piece.hh"
#include "util/string_piece.hh"
#include "decoder_utils.h"
using
namespace
lm
::
ngram
;
Scorer
::
Scorer
(
float
alpha
,
float
beta
,
std
::
string
lm_model_path
)
{
this
->
_alpha
=
alpha
;
this
->
_beta
=
beta
;
if
(
access
(
lm_model_path
.
c_str
(),
F_OK
)
!=
0
)
{
std
::
cout
<<
"Invalid language model path!"
<<
std
::
endl
;
exit
(
1
);
}
this
->
_language_model
=
LoadVirtual
(
lm_model_path
.
c_str
());
Scorer
::
Scorer
(
double
alpha
,
double
beta
,
const
std
::
string
&
lm_path
)
{
this
->
alpha
=
alpha
;
this
->
beta
=
beta
;
_is_character_based
=
true
;
_language_model
=
nullptr
;
_max_order
=
0
;
// load language model
load_LM
(
lm_path
.
c_str
());
}
Scorer
::~
Scorer
(){
delete
(
lm
::
base
::
Model
*
)
this
->
_language_model
;
Scorer
::~
Scorer
()
{
if
(
_language_model
!=
nullptr
)
delete
static_cast
<
lm
::
base
::
Model
*>
(
_language_model
);
}
/* Strip a input sentence
* Parameters:
* str: A reference to the objective string
* ch: The character to prune
* Return:
* void
*/
inline
void
strip
(
std
::
string
&
str
,
char
ch
=
' '
)
{
if
(
str
.
size
()
==
0
)
return
;
int
start
=
0
;
int
end
=
str
.
size
()
-
1
;
for
(
int
i
=
0
;
i
<
str
.
size
();
i
++
){
if
(
str
[
i
]
==
ch
)
{
start
++
;
}
else
{
break
;
}
void
Scorer
::
load_LM
(
const
char
*
filename
)
{
if
(
access
(
filename
,
F_OK
)
!=
0
)
{
std
::
cerr
<<
"Invalid language model file !!!"
<<
std
::
endl
;
exit
(
1
);
}
for
(
int
i
=
str
.
size
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
str
[
i
]
==
ch
)
{
end
--
;
}
else
{
break
;
RetriveStrEnumerateVocab
enumerate
;
Config
config
;
config
.
enumerate_vocab
=
&
enumerate
;
_language_model
=
lm
::
ngram
::
LoadVirtual
(
filename
,
config
);
_max_order
=
static_cast
<
lm
::
base
::
Model
*>
(
_language_model
)
->
Order
();
_vocabulary
=
enumerate
.
vocabulary
;
for
(
size_t
i
=
0
;
i
<
_vocabulary
.
size
();
++
i
)
{
if
(
_is_character_based
&&
_vocabulary
[
i
]
!=
UNK_TOKEN
&&
_vocabulary
[
i
]
!=
START_TOKEN
&&
_vocabulary
[
i
]
!=
END_TOKEN
&&
get_utf8_str_len
(
enumerate
.
vocabulary
[
i
])
>
1
)
{
_is_character_based
=
false
;
}
}
if
(
start
==
0
&&
end
==
str
.
size
()
-
1
)
return
;
if
(
start
>
end
)
{
std
::
string
emp_str
;
str
=
emp_str
;
}
else
{
str
=
str
.
substr
(
start
,
end
-
start
+
1
);
}
}
int
Scorer
::
word_count
(
std
::
string
sentence
)
{
strip
(
sentence
);
int
cnt
=
1
;
for
(
int
i
=
0
;
i
<
sentence
.
size
();
i
++
)
{
if
(
sentence
[
i
]
==
' '
&&
sentence
[
i
-
1
]
!=
' '
)
{
cnt
++
;
double
Scorer
::
get_log_cond_prob
(
const
std
::
vector
<
std
::
string
>&
words
)
{
lm
::
base
::
Model
*
model
=
static_cast
<
lm
::
base
::
Model
*>
(
_language_model
);
double
cond_prob
;
State
state
,
tmp_state
,
out_state
;
// avoid to inserting <s> in begin
model
->
NullContextWrite
(
&
state
);
for
(
size_t
i
=
0
;
i
<
words
.
size
();
++
i
)
{
lm
::
WordIndex
word_index
=
model
->
BaseVocabulary
().
Index
(
words
[
i
]);
// encounter OOV
if
(
word_index
==
0
)
{
return
OOV_SCOER
;
}
}
return
cnt
;
}
double
Scorer
::
language_model_score
(
std
::
string
sentence
)
{
lm
::
base
::
Model
*
model
=
(
lm
::
base
::
Model
*
)
this
->
_language_model
;
State
state
,
out_state
;
lm
::
FullScoreReturn
ret
;
model
->
BeginSentenceWrite
(
&
state
);
for
(
util
::
TokenIter
<
util
::
SingleCharacter
,
true
>
it
(
sentence
,
' '
);
it
;
++
it
){
lm
::
WordIndex
wid
=
model
->
BaseVocabulary
().
Index
(
*
it
);
ret
=
model
->
BaseFullScore
(
&
state
,
wid
,
&
out_state
);
cond_prob
=
model
->
BaseScore
(
&
state
,
word_index
,
&
out_state
);
tmp_state
=
state
;
state
=
out_state
;
out_state
=
tmp_state
;
}
//log10 prob
double
log_prob
=
ret
.
prob
;
return
log_prob
;
// log10 prob
return
cond_prob
;
}
void
Scorer
::
reset_params
(
float
alpha
,
float
beta
)
{
this
->
_alpha
=
alpha
;
this
->
_beta
=
beta
;
double
Scorer
::
get_sent_log_prob
(
const
std
::
vector
<
std
::
string
>&
words
)
{
std
::
vector
<
std
::
string
>
sentence
;
if
(
words
.
size
()
==
0
)
{
for
(
size_t
i
=
0
;
i
<
_max_order
;
++
i
)
{
sentence
.
push_back
(
START_TOKEN
);
}
}
else
{
for
(
size_t
i
=
0
;
i
<
_max_order
-
1
;
++
i
)
{
sentence
.
push_back
(
START_TOKEN
);
}
sentence
.
insert
(
sentence
.
end
(),
words
.
begin
(),
words
.
end
());
}
sentence
.
push_back
(
END_TOKEN
);
return
get_log_prob
(
sentence
);
}
double
Scorer
::
get_score
(
std
::
string
sentence
,
bool
log
)
{
double
lm_score
=
language_model_score
(
sentence
);
int
word_cnt
=
word_count
(
sentence
);
double
final_score
=
0.0
;
if
(
log
==
false
)
{
final_score
=
pow
(
10
,
_alpha
*
lm_score
)
*
pow
(
word_cnt
,
_beta
);
}
else
{
final_score
=
_alpha
*
lm_score
*
std
::
log
(
10
)
+
_beta
*
std
::
log
(
word_cnt
);
double
Scorer
::
get_log_prob
(
const
std
::
vector
<
std
::
string
>&
words
)
{
assert
(
words
.
size
()
>
_max_order
);
double
score
=
0.0
;
for
(
size_t
i
=
0
;
i
<
words
.
size
()
-
_max_order
+
1
;
++
i
)
{
std
::
vector
<
std
::
string
>
ngram
(
words
.
begin
()
+
i
,
words
.
begin
()
+
i
+
_max_order
);
score
+=
get_log_cond_prob
(
ngram
);
}
return
final_
score
;
return
score
;
}
deep_speech_2/deploy/scorer.h
浏览文件 @
a96c6509
...
...
@@ -2,35 +2,58 @@
#define SCORER_H_
#include <string>
#include <memory>
#include <vector>
#include "lm/enumerate_vocab.hh"
#include "lm/word_index.hh"
#include "lm/virtual_interface.hh"
#include "util/string_piece.hh"
/* External scorer to evaluate a prefix or a complete sentence
* when a new word appended during decoding, consisting of word
* count and language model scoring.
const
double
OOV_SCOER
=
-
1000.0
;
const
std
::
string
START_TOKEN
=
"<s>"
;
const
std
::
string
UNK_TOKEN
=
"<unk>"
;
const
std
::
string
END_TOKEN
=
"</s>"
;
* Example:
* Scorer ext_scorer(alpha, beta, "path_to_language_model.klm");
* double score = ext_scorer.get_score("sentence_to_score");
*/
class
Scorer
{
private:
float
_alpha
;
float
_beta
;
void
*
_language_model
;
// Implement a callback to retrive string vocabulary.
class
RetriveStrEnumerateVocab
:
public
lm
::
EnumerateVocab
{
public:
RetriveStrEnumerateVocab
()
{}
// word insertion term
int
word_count
(
std
::
string
);
// n-gram language model scoring
double
language_model_score
(
std
::
string
);
void
Add
(
lm
::
WordIndex
index
,
const
StringPiece
&
str
)
{
vocabulary
.
push_back
(
std
::
string
(
str
.
data
(),
str
.
length
()));
}
std
::
vector
<
std
::
string
>
vocabulary
;
};
// External scorer to query languange score for n-gram or sentence.
// Example:
// Scorer scorer(alpha, beta, "path_of_language_model");
// scorer.get_log_cond_prob({ "WORD1", "WORD2", "WORD3" });
// scorer.get_sent_log_prob({ "WORD1", "WORD2", "WORD3" });
class
Scorer
{
public:
Scorer
(){}
Scorer
(
float
alpha
,
float
beta
,
std
::
string
lm_model_path
);
Scorer
(
double
alpha
,
double
beta
,
const
std
::
string
&
lm_path
);
~
Scorer
();
double
get_log_cond_prob
(
const
std
::
vector
<
std
::
string
>&
words
);
double
get_sent_log_prob
(
const
std
::
vector
<
std
::
string
>&
words
);
size_t
get_max_order
()
{
return
_max_order
;
}
bool
is_character_based
()
{
return
_is_character_based
;
}
std
::
vector
<
std
::
string
>
get_vocab
()
{
return
_vocabulary
;
}
// expose to decoder
double
alpha
;
double
beta
;
// reset params alpha & beta
void
reset_params
(
float
alpha
,
float
beta
);
// get the final score
double
get_score
(
std
::
string
,
bool
log
=
false
);
protected:
void
load_LM
(
const
char
*
filename
);
double
get_log_prob
(
const
std
::
vector
<
std
::
string
>&
words
);
private:
void
*
_language_model
;
bool
_is_character_based
;
size_t
_max_order
;
std
::
vector
<
std
::
string
>
_vocabulary
;
};
#endif //SCORER_H_
#endif //
SCORER_H_
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录