提交 a95d4932 编写于 作者: S sserdoubleh 提交者: Yibing Liu

Update Dialog-PLATO: Support paddlepaddle1.6. Release PLATO w/o latent. (#3931)

* Upload mode: Dialogue-BLATO.

* Update README.md.

* Update Dialog-PLATO: Support APIs in paddlepaddle 1.6 and more features. Release PLATO w/o latent.
上级 2c5bf11a
......@@ -2,19 +2,25 @@
**PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable**
[paper link](http://arxiv.org/abs/1910.07931)
**\*\*\*\*\* Update \*\*\*\*\***
Nov. 14: Support new APIs in paddlepaddle 1.6.0 (model files in the link have been updated accordingly), multi-GPU training and decoding strategy of top-k sampling. Release our baseline model `PLATO w/o latent`.
## Requirements
```
- python >= 3.6
- paddlepaddle >= 1.5.2
- paddlepaddle >= 1.6.0
- numpy
- nltk
- tqdm
- visualdl >= 1.3.0 (optional)
- regex
```
## Pre-trained dialogue generation model
A novel pre-training model for dialogue generation is introduced in this work, incorporated with latent discrete variables for one-to-many relationship modeling. Our model is flexible enough to support various kinds of conversations, including chit-chat, knowledge grounded dialogues, and conversational question answering. The pre-training is carried out with Reddit and Twitter corpora. You can download the uncased pre-trained model from:
A novel pre-training model for dialogue generation is introduced in this work, incorporated with latent discrete variables for one-to-many relationship modeling. Our model is flexible enough to support various kinds of conversations, including chit-chat, knowledge grounded dialogues, and conversational question answering. The pre-training is carried out with Reddit and Twitter corpora. You can download the uncased pre-trained model from:
* PLATO, uncased [model](https://baidu-nlp.bj.bcebos.com/PLATO/model.tar.gz): 12-layers, 768-hidden, 12-heads, 132M parameters
* PLATO w/o latent, uncased [model](https://baidu-nlp.bj.bcebos.com/PLATO/model-baseline.tar.gz): 12-layers 768-hidden, 12-heads, 109M parameters
```bash
mv /path/to/model.tar.gz .
......@@ -26,19 +32,19 @@ We also provide instructions to fine-tune PLATO on different conversation datase
### Data preparation
Download data from the [link](https://baidu-nlp.bj.bcebos.com/PLATO/data.tar.gz).
The tar file contains three processed datasets: DailyDialog, PersonaChat and DSTC7_AVSD.
The tar file contains three processed datasets: `DailyDialog`, `PersonaChat` and `DSTC7_AVSD`.
```bash
mv /path/to/data.tar.gz .
tar xzf data.tar.gz
```
### Data format
Our model supports two kinds of data formats for dialogue context: "multi" and "multi_knowledge".
* multi: multi-turn dialogue context.
Our model supports two kinds of data formats for dialogue context: `multi` and `multi_knowledge`.
* `multi`: multi-turn dialogue context.
```txt
u_1 __eou__ u_2 __eou__ ... u_n \t r
```
* multi_knowledge: multi-turn dialogue context with background knowledge.
* `multi_knowledge`: multi-turn dialogue context with background knowledges.
```txt
k_1 __eou__ k_2 __eou__ ... k_m \t u_1 __eou__ u_2 __eou__ ... u_n \t r
```
......@@ -46,7 +52,7 @@ k_1 __eou__ k_2 __eou__ ... k_m \t u_1 __eou__ u_2 __eou__ ... u_n \t r
If you want to use this model on other datasets, you can process your data accordingly.
### Train
Fine-tuning the pre-trained model on different ${DATASET}.
Fine-tuning the pre-trained model on different `${DATASET}`.
```bash
# DailyDialog / PersonaChat / DSTC7_AVSD
DATASET=DailyDialog
......@@ -54,11 +60,24 @@ sh scripts/${DATASET}/train.sh
```
After training, you can find the output folder `outputs/${DATASET}` (by default). It contatins `best.model` (best results on validation dataset), `hparams.json` (hyper-parameters of training script) and `trainer.log` (training log).
Fine-tuning the pre-trained model on multiple GPUs.
Note: You need to install NCCL library and set up the environment variable `LD_LIBRARY` properly.
```bash
sh scripts/DailyDialog/multi_gpu_train.sh
```
You can fine-tune PLATO w/o latent on different `${DATASET}`. We provide an example script on DailyDialog dataset.
```bash
sh scripts/DailyDialog/baseline_train.sh
```
#### Recommended settings
For the fine-tuning of our pre-trained model, it usually requires about 10 epochs to reach convergence with learning rate = 1e-5 and about 2-3 epochs to reach convergence with learning rate = 5e-5.
GPU_MEM | batch_size | max_len
GPU Memory | batch size | max len
------|------|------
16G | 6 | 256
32G | 12 | 256
......@@ -69,9 +88,17 @@ Running inference on test dataset.
# DailyDialog / PersonaChat / DSTC7_AVSD
DATASET=DailyDialog
sh scripts/${DATASET}/infer.sh
# Running inference of PLATO w/o latent
sh scripts/DailyDialog/baseline_infer.sh
```
After inference, you can find the output foler `outputs/${DATASET}.infer` (by default). It contains `infer_0.result.json` (the inference result), `hparams.json` (hyper-parameters of inference scipt) and `trainer.log` (inference log).
If you want to use top-k sampling (beam search by default), you can follow the example script:
```bash
sh scripts/DailyDialog/topk_infer.sh
```
## Result
### DailyDialog
......@@ -79,37 +106,41 @@ Model | BLEU-1/2 | Distinct-1/2 | Fluency | Coherence | Informativeness | Overal
------|------|------|------|------|------|-------
Seq2Seq | 0.336/0.268 | 0.030/0.128 | 1.85 | 0.37 | 0.44 | 0.33
iVAE_MI | 0.309/0.249 | 0.029/0.250 | 1.53 | 0.34 | 0.59 | 0.30
Our w/o Latent | 0.405/0.322 | 0.046/0.246 | 1.91 | 1.58 | 1.03 | 1.44
Our Method | 0.352/0.275 | 0.045/0.253 | 1.97 | 1.57 | 1.23 | 1.48
Our w/o Latent | **0.405/0.322** | 0.046/0.246 | 1.91 | **1.58** | 1.03 | 1.44
Our Method | 0.397/0.311 | **0.053/0.291** | **1.97** | 1.57 | **1.23** | **1.48**
### PersonaChat
Model | BLEU-1/2 | Distinct-1/2 | Knowledge R/P/F1 | Fluency | Coherence | Informativeness | Overall
------|------|------|------|------|------|-------|-------
Seq2Seq | 0.448/0.353 | 0.004/0.016 | 0.004/0.016/0.006 | 1.82 | 0.37 | 0.85 | 0.34
LIC | 0.405/0.320 | 0.019/0.113 | 0.042/0.154/0.064 | 1.95 | 1.34 | 1.09 | 1.29
Our w/o Latent | 0.458/0.357 | 0.012/0.064 | 0.085/0.263/0.125 | 1.98 | 1.36 | 1.04 | 1.30
Our Method | 0.418/0.324 | 0.014/0.081 | 0.162/0.542/0.242 | 1.99 | 1.51 | 1.70 | 1.50
Our w/o Latent | **0.458/0.357** | 0.012/0.064 | 0.085/0.263/0.125 | 1.98 | 1.36 | 1.04 | 1.30
Our Method | 0.406/0.315 | **0.021/0.121** | **0.142/0.461/0.211** | **1.99** | **1.51** | **1.70** | **1.50**
### DSTC7_AVSD
Model | BELU-1 | BELU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGH-L | CIDEr
------|------|------|------|------|------|-------|-------
Baseline | 0.629 | 0.485 | 0.383 | 0.309 | 0.215 | 0.487 | 0.746
CMU | 0.718 | 0.584 | 0.478 | 0.394 | 0.267 | 0.563 | 1.094
Our Method | 0.784 | 0.637 | 0.525 | 0.435 | 0.286 | 0.596 | 1.209
Our Method | **0.784** | **0.637** | **0.525** | **0.435** | **0.286** | **0.596** | **1.209**
Our Method Upper Bound | 0.925 | 0.843 | 0.767 | 0.689 | 0.361 | 0.731 | 1.716
Note: In the experiments on DSTC_AVSD, the response selection of our method is strengthened with an extra ranking step, which ranks the candidates according to the automatic scores and selects the top one as the final answer.
Note: In the experiments on `DSTC7_AVSD`, the response selection of our method is strengthened with an extra ranking step, which ranks the candidates according to the automatic scores and selects the top one as the final answer.
## Citation
If you find PLATO useful in your work, please cite the following Arxiv paper:
```
@article{bao2019plato,
title={PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable},
author={Bao, Siqi and He, Huang, Wang, Fan and Wu, Hua},
author={Bao, Siqi and He, Huang and Wang, Fan and Wu, Hua and Wang, Haifeng},
journal={arXiv preprint arXiv:1910.07931},
year={2019}
}
```
## Disclaimer
This project aims to facilitate further research progress in dialogue generation. Baidu is not responsible for the 3rd party's generation with the pre-trained system.
## Contact information
For help or issues using PLATO, please submit a GitHub issue.
......
......@@ -56,7 +56,7 @@ class HParams(dict):
params_dict = json.load(fp)
for k, v in params_dict.items():
if isinstance(v, dict):
self[k] = HParams(v)
self[k].update(HParams(v))
else:
self[k] = v
......
......@@ -20,9 +20,11 @@ import math
import paddle.fluid as fluid
import paddle.batch
from args import str2bool
from sampler import RandomSampler
from sampler import SequentialSampler
from plato.args import str2bool
from plato.data.sampler import RandomSampler
from plato.data.sampler import SequentialSampler
from plato.data.sampler import SortedSampler
import plato.modules.parallel as parallel
class DataLoader(object):
......@@ -31,11 +33,13 @@ class DataLoader(object):
@classmethod
def add_cmdline_argument(cls, group):
group.add_argument("--shuffle", type=str2bool, default=True)
group.add_argument("--sort_pool_size", type=int, default=0)
return group
def __init__(self, dataset, hparams, collate_fn=None, sampler=None, is_test=False):
def __init__(self, dataset, hparams, collate_fn=None, sampler=None, is_test=False, is_train=False):
self.dataset = dataset
self.collate_fn = collate_fn
self.sort_pool_size = hparams.sort_pool_size
if sampler is None:
if hparams.shuffle and not is_test:
......@@ -43,6 +47,9 @@ class DataLoader(object):
else:
sampler = SequentialSampler(dataset)
if self.sort_pool_size > 0 and not is_test:
sampler = SortedSampler(sampler, self.sort_pool_size)
def reader():
for idx in sampler:
yield idx
......@@ -50,7 +57,7 @@ class DataLoader(object):
self.reader = paddle.batch(reader, batch_size=hparams.batch_size, drop_last=False)
self.num_batches = math.ceil(len(dataset) / hparams.batch_size)
if hparams.use_data_distributed:
if hparams.use_data_distributed and parallel.Env().nranks > 1 and is_train:
self.reader = fluid.contrib.reader.distributed_batch_reader(self.reader)
self.num_batches = self.num_batches // fluid.dygraph.parallel.Env().nranks
......
......@@ -22,8 +22,8 @@ import pickle
import time
from tqdm import tqdm
from tokenizer import Tokenizer
from args import str2bool
from plato.args import str2bool
from plato.data.tokenizer import Tokenizer
def max_lens(X):
......@@ -77,21 +77,26 @@ class BPETextField(object):
group.add_argument("--max_knowledge_num", type=int, default=16,
help="The maximum number of knowledges.")
group.add_argument("--max_knowledge_len", type=int, default=16,
help="The maximum length of each knowledges")
help="The maximum length of each knowledges.")
group.add_argument("--tokenizer_type", type=str, default="Bert",
choices=["Bert", "GPT2"],
help="The type of tokenizer.")
return group
def __init__(self, hparam):
def __init__(self, hparams):
special_tokens = [self.pad_token, self.bos_token, self.eos_token, self.unk_token]
self.tokenizer = Tokenizer(vocab_path=hparam.vocab_path, special_tokens=special_tokens)
self.filtered = hparam.filtered
self.max_len = hparam.max_len
self.min_utt_len = hparam.min_utt_len
self.max_utt_len = hparam.max_utt_len
self.min_ctx_turn = hparam.min_ctx_turn
self.max_ctx_turn = hparam.max_ctx_turn - 1 # subtract reply turn
self.max_knowledge_num = hparam.max_knowledge_num
self.max_knowledge_len = hparam.max_knowledge_len
self.tokenizer = Tokenizer(vocab_path=hparams.vocab_path,
special_tokens=special_tokens,
tokenizer_type=hparams.tokenizer_type)
self.filtered = hparams.filtered
self.max_len = hparams.max_len
self.min_utt_len = hparams.min_utt_len
self.max_utt_len = hparams.max_utt_len
self.min_ctx_turn = hparams.min_ctx_turn
self.max_ctx_turn = hparams.max_ctx_turn - 1 # subtract reply turn
self.max_knowledge_num = hparams.max_knowledge_num
self.max_knowledge_len = hparams.max_knowledge_len
return
@property
......@@ -187,6 +192,27 @@ class BPETextField(object):
return self.min_ctx_turn <= len(utts) \
and (not self.filtered or len(utts) <= self.max_ctx_turn)
def build_example_multi_turn(self, req):
examples = []
src = [self.tokenizer.tokenize(s) for s in req["context"]]
src = [s[-self.max_utt_len:] for s in src[-self.max_ctx_turn:]]
src = [self.numericalize(s) + [self.eos_id] for s in src]
ex = {"src": src}
examples.append(ex)
return examples
def build_example_multi_turn_with_knowledge(self, req):
examples = []
src = [self.tokenizer.tokenize(s) for s in req["context"]]
src = [s[-self.max_utt_len:] for s in src[-self.max_ctx_turn:]]
src = [self.numericalize(s) + [self.eos_id] for s in src]
knowledge = [self.tokenizer.tokenize(k) for k in req["knowledge"]]
knowledge = [k[:self.max_knowledge_len] for k in knowledge]
knowledge = [self.numericalize(k) + [self.eos_id] for k in knowledge]
ex = {"src": src, "knowledge": knowledge}
examples.append(ex)
return examples
def build_examples_multi_turn(self, data_file, data_type="train"):
print(f"Reading examples from '{data_file}' ...")
examples = []
......@@ -212,7 +238,7 @@ class BPETextField(object):
print(f"Built {len(examples)} {data_type.upper()} examples ({ignored} filtered)")
return examples
def build_examples_multi_turn_with_knoledge(self, data_file, data_type="train"):
def build_examples_multi_turn_with_knowledge(self, data_file, data_type="train"):
print(f"Reading examples from '{data_file}' ...")
examples = []
ignored = 0
......
......@@ -47,10 +47,43 @@ class RandomSampler(Sampler):
def __init__(self, dataset):
self.dataset = dataset
self.epoch = 0
return
def __len__(self):
return len(self.dataset)
def __iter__(self):
np.random.seed(self.epoch)
self.epoch += 1
return iter(np.random.permutation(len(self)))
class SortedSampler(Sampler):
""" Sorted Sampler.
Sort each block of examples by key.
"""
def __init__(self, sampler, sort_pool_size, key="src"):
self.sampler = sampler
self.sort_pool_size = sort_pool_size
self.key = lambda idx: len(self.sampler.dataset[idx][key])
return
def __len__(self):
return len(self.sampler)
def __iter__(self):
pool = []
for idx in self.sampler:
pool.append(idx)
if len(pool) == self.sort_pool_size:
pool = sorted(pool, key=self.key)
for i in pool:
yield i
pool = []
if len(pool) > 0:
pool = sorted(pool, key=self.key)
for i in pool:
yield i
......@@ -18,8 +18,11 @@ Tokenizer class.
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import json
import logging
import os
import regex as re
import sys
import unicodedata
......@@ -41,40 +44,71 @@ def clean_string(string):
class Tokenizer(object):
def __init__(self, vocab_path, special_tokens=[]):
self.spec_convert_dict = {"[BOS]": "[unused0]", "[EOS]": "[unused1]"}
self.spec_revert_dict = {v: k for k,
v in self.spec_convert_dict.items()}
special_tokens = [self.spec_convert_dict.get(tok, tok)
for tok in special_tokens]
self.special_tokens = ("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")
self.special_tokens += tuple(x for x in special_tokens if x not in self.special_tokens)
self._tokenizer = BertTokenizer(vocab_path, never_split=self.special_tokens)
for tok in self.special_tokens:
assert tok in self._tokenizer.vocab, f"special token '{tok}' is not in the vocabulary"
self.vocab_size = len(self._tokenizer.vocab)
def __init__(self, vocab_path, special_tokens=[], tokenizer_type="Bert"):
self.tokenizer_type = tokenizer_type
if tokenizer_type == "Bert":
self.spec_convert_dict = {"[BOS]": "[unused0]", "[EOS]": "[unused1]"}
self.spec_revert_dict = {v: k for k,
v in self.spec_convert_dict.items()}
special_tokens = [self.spec_convert_dict.get(tok, tok)
for tok in special_tokens]
self.special_tokens = ("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")
self.special_tokens += tuple(x for x in special_tokens if x not in self.special_tokens)
self._tokenizer = BertTokenizer(vocab_path, never_split=self.special_tokens)
for tok in self.special_tokens:
assert tok in self._tokenizer.vocab, f"special token '{tok}' is not in the vocabulary"
self.vocab_size = len(self._tokenizer.vocab)
elif tokenizer_type == "GPT2":
self.spec_convert_dict = {"[UNK]": "<unk>"}
self.spec_revert_dict = {v: k for k,
v in self.spec_convert_dict.items()}
special_tokens = [tok for tok in special_tokens
if tok not in self.spec_convert_dict]
vocab_file = os.path.join(vocab_path, "vocab.json")
merges_file = os.path.join(vocab_path, "merges.txt")
self._tokenizer = GPT2Tokenizer(vocab_file, merges_file, special_tokens=special_tokens)
self.num_specials = len(special_tokens)
self.vocab_size = len(self._tokenizer)
else:
raise ValueError
def tokenize(self, text):
return self._tokenizer.tokenize(text)
def convert_tokens_to_ids(self, tokens):
tokens = [self.spec_convert_dict.get(tok, tok) for tok in tokens]
ids = self._tokenizer.convert_tokens_to_ids(tokens)
return ids
if self.tokenizer_type == "Bert":
tokens = [self.spec_convert_dict.get(tok, tok) for tok in tokens]
ids = self._tokenizer.convert_tokens_to_ids(tokens)
return ids
else:
tokens = [self.spec_convert_dict.get(tok, tok) for tok in tokens]
ids = self._tokenizer.convert_tokens_to_ids(tokens)
ids = [(i + self.num_specials) % self.vocab_size for i in ids]
return ids
def convert_ids_to_tokens(self, ids):
tokens = self._tokenizer.convert_ids_to_tokens(ids)
tokens = [self.spec_revert_dict.get(tok, tok) for tok in tokens]
return tokens
if self.tokenizer_type == "Bert":
tokens = self._tokenizer.convert_ids_to_tokens(ids)
tokens = [self.spec_revert_dict.get(tok, tok) for tok in tokens]
return tokens
else:
ids = [(i - self.num_specials) % self.vocab_size for i in ids]
tokens = self._tokenizer.convert_ids_to_tokens(ids)
tokens = [self.spec_revert_dict.get(tok, tok) for tok in tokens]
return tokens
def decode(self, ids, ignore_tokens=[]):
tokens = self.convert_ids_to_tokens(ids)
if len(ignore_tokens) > 0:
ignore_tokens = set(ignore_tokens)
tokens = [tok for tok in tokens if tok not in ignore_tokens]
string = " ".join(tokens).replace(" ##", "")
if self.tokenizer_type == "Bert":
string = " ".join(tokens).replace(" ##", "")
else:
string = "".join(tokens)
string = bytearray([self._tokenizer.byte_decoder[c]
for c in string]).decode("utf-8")
string = clean_string(string)
return string
......@@ -400,3 +434,195 @@ def _is_punctuation(char):
if cat.startswith("P"):
return True
return False
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
try:
from functools import lru_cache
except ImportError:
# Just a dummy decorator to get the checks to run on python2
# because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
def lru_cache():
return lambda func: func
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
_chr = unichr if sys.version_info[0] == 2 else chr
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [_chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class GPT2Tokenizer(object):
"""
GPT-2 BPE tokenizer. Peculiarities:
- Byte-level BPE
"""
def __init__(self, vocab_file, merges_file, errors='replace', special_tokens=None, max_len=None):
self.max_len = max_len if max_len is not None else int(1e12)
self.encoder = json.load(open(vocab_file))
self.decoder = {v:k for k,v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_data]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
self.special_tokens = {}
self.special_tokens_decoder = {}
self.set_special_tokens(special_tokens)
def __len__(self):
return len(self.encoder) + len(self.special_tokens)
def set_special_tokens(self, special_tokens):
""" Add a list of additional tokens to the encoder.
The additional tokens are indexed starting from the last index of the
current vocabulary in the order of the `special_tokens` list.
"""
if not special_tokens:
self.special_tokens = {}
self.special_tokens_decoder = {}
return
self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens))
self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
logger.info("Special tokens {}".format(self.special_tokens))
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def tokenize(self, text):
""" Tokenize a string. """
bpe_tokens = []
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[ord(b)] for b in token if ord(b) in self.byte_encoder)
if token == '':
continue
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def convert_tokens_to_ids(self, tokens):
""" Converts a sequence of tokens into ids using the vocab. """
ids = []
if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.encoder.get(tokens, 0)
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.encoder.get(token, 0))
if len(ids) > self.max_len:
logger.warning(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this OpenAI GPT model ({} > {}). Running this"
" sequence through the model will result in indexing errors".format(len(ids), self.max_len)
)
return ids
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
"""Converts a sequence of ids in BPE tokens using the vocab."""
tokens = []
for i in ids:
if i in self.special_tokens_decoder:
if not skip_special_tokens:
tokens.append(self.special_tokens_decoder[i])
else:
tokens.append(self.decoder[i])
return tokens
def encode(self, text):
return self.convert_tokens_to_ids(self.tokenize(text))
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
return text
......@@ -16,6 +16,7 @@ MetricsTracker class
"""
from collections import defaultdict
import math
class MetricsTracker(object):
......@@ -66,6 +67,9 @@ class MetricsTracker(object):
for key, val in self.metrics_val.items():
metric_str = f"{key.upper()}-{val:.3f}"
metric_strs.append(metric_str)
if "token_nll" in self.metrics_val:
metric_str = f"TOKEN_PPL-{math.exp(self.metrics_val['token_nll']):.3f}"
metric_strs.append(metric_str)
metric_strs = " ".join(metric_strs)
return metric_strs
......@@ -74,5 +78,8 @@ class MetricsTracker(object):
for key, val in self.metrics_avg.items():
metric_str = f"{key.upper()}-{val:.3f}"
metric_strs.append(metric_str)
if "token_nll" in self.metrics_avg:
metric_str = f"TOKEN_PPL-{math.exp(self.metrics_avg['token_nll']):.3f}"
metric_strs.append(metric_str)
metric_strs = " ".join(metric_strs)
return metric_strs
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Loading models.
"""
import plato.models.unified_transformer
......@@ -15,13 +15,17 @@
Generator class.
"""
import bisect
import math
import sys
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.framework import Variable
from args import str2bool
import modules.functions as F
from plato.args import str2bool
import plato.modules.functions as F
def repeat(var, times):
......@@ -56,34 +60,256 @@ def gather(var, idx):
return var
class BeamSearch(object):
class Generator(object):
""" Genrator class. """
_registry = dict()
@classmethod
def register(cls, name):
Generator._registry[name] = cls
return
@staticmethod
def by_name(name):
return Generator._registry[name]
@staticmethod
def create(hparams, *args, **kwargs):
""" Create generator. """
generator_cls = Generator.by_name(hparams.generator)
return generator_cls(hparams, *args, **kwargs)
@classmethod
def add_cmdline_argument(cls, parser):
group = parser.add_argument_group("Generator")
group.add_argument("--beam_size", type=int, default=5,
help="The beam size in beam search.")
group.add_argument("--generator", type=str, default="BeamSearch",
choices=["TopKSampling", "TopPSampling", "GreedySampling",
"BeamSearch"])
group.add_argument("--min_gen_len", type=int, default=1,
help="The minimum length of generated response.")
group.add_argument("--max_gen_len", type=int, default=30,
help="The maximum length of generated response.")
group.add_argument("--length_average", type=str2bool, default=False,
help="Whether to use length average.")
group.add_argument("--ignore_unk", type=str2bool, default=True,
help="Whether to ignore unkown token in generation.")
args, _ = parser.parse_known_args()
generator_cls = cls.by_name(args.generator)
generator_cls.add_cmdline_argument(group)
return group
def __init__(self, bpe, hparams):
def __init__(self, hparams, bpe):
self.vocab_size = bpe.vocab_size
self.bos_id = bpe.bos_id
self.eos_id = bpe.eos_id
self.unk_id = bpe.unk_id
self.pad_id = bpe.pad_id
self.beam_size = hparams.beam_size
self.min_gen_len = hparams.min_gen_len
assert self.min_gen_len >= 1
self.max_gen_len = hparams.max_gen_len
assert 1 <= self.min_gen_len <= self.max_gen_len
return
def __call__(self, step_fn, state):
"""
Running generation.
@param : step_fn : decoding one step
@type : function
@param : state : initial state
@type : dict
"""
raise NotImplementedError
class Sampling(Generator):
""" Sampling Generator. """
@classmethod
def add_cmdline_argument(cls, group):
group.add_argument("--ignore_unk", type=str2bool, default=True,
help="Whether to ignore unkown token in generation.")
group.add_argument("--sampling_temperature", type=float, default=1.0)
return group
def __init__(self, hparams, bpe):
super().__init__(hparams, bpe)
self.ignore_unk = hparams.ignore_unk
self.temperature = hparams.sampling_temperature
return
def _sampling(self, scores):
""" Sampling function. """
raise NotImplementedError
def __call__(self, step_fn, state):
"""
Running generation.
@param : step_fn : decoding one step
@type : function
@param : state : initial state
@type : dict
"""
batch_size = state["batch_size"]
vocab_size = self.vocab_size
pos_index = layers.range(0, batch_size, 1, dtype="int64")
pos_index = layers.scale(pos_index, vocab_size)
# shape: [batch_size, beam_size, 1]
predictions = layers.fill_constant(shape=[batch_size, 1],
dtype="int64",
value=self.bos_id)
sequence_scores = layers.fill_constant(shape=[batch_size],
dtype="float32",
value=0.0)
unk_penalty = np.zeros(vocab_size, dtype="float32")
unk_penalty[self.unk_id] = -1e10
unk_penalty = layers.assign(unk_penalty)
eos_penalty = np.zeros(vocab_size, dtype="float32")
eos_penalty[self.eos_id] = -1e10
eos_penalty = layers.assign(eos_penalty)
scores_after_end = np.full(vocab_size, -1e10, dtype="float32")
scores_after_end[self.pad_id] = 0
scores_after_end = layers.assign(scores_after_end)
# initial input
for step in range(1, self.max_gen_len + 1):
pre_ids = predictions[:, -1:]
state["pred_token"] = F.unsqueeze(pre_ids, [2])
if step > 1:
state["pred_mask"] = 1 - F.equal(state["pred_token"], self.pad_id)
state["pred_pos"] = state["pred_pos"] + 1
scores, state = step_fn(state)
# Generate next
# scores shape: [batch_size, vocab_size]
if self.ignore_unk:
scores = scores + unk_penalty
if step <= self.min_gen_len:
scores = scores + eos_penalty
# previous token is [PAD] or [EOS]
# shape: [batch_size, 1]
pre_eos_mask = F.equal(pre_ids, self.eos_id) + F.equal(pre_ids, self.pad_id)
scores = scores * (1 - pre_eos_mask) + \
layers.expand(pre_eos_mask, [1, vocab_size]) * scores_after_end
scores = scores / self.temperature
preds = self._sampling(scores)
predictions = layers.concat([predictions, F.unsqueeze(preds, [1])], axis=1)
scores = layers.reshape(scores, [batch_size * vocab_size])
preds = preds + pos_index
scores = gather(scores, preds)
sequence_scores = sequence_scores + scores
results = {
"preds": predictions,
"scores": sequence_scores
}
return results
class GreedySampling(Sampling):
""" Greedy sampling. """
@classmethod
def add_cmdline_argument(cls, group):
return Sampling.add_cmdline_argument(group)
def _sampling(self, logits):
""" Implement greedy sampling. """
preds = layers.argmax(logits, axis=1)
return preds
class TopKSampling(Sampling):
""" Top-k sampling. """
@classmethod
def add_cmdline_argument(cls, group):
Sampling.add_cmdline_argument(group)
group.add_argument("--top_k_ratio", type=float, default=None)
group.add_argument("--top_k_num", type=int, default=None)
return group
def __init__(self, hparams, bpe):
super().__init__(hparams, bpe)
assert hparams.top_k_ratio is not None or hparams.top_k_num is not None
if hparams.top_k_num is not None:
self.top_k_num = hparams.top_k_num
else:
self.top_k_num = math.floor(hparams.top_k_ratio * self.vocab_size)
assert self.top_k_num >= 1
return
def _sampling(self, logits):
""" Implement top-k sampling. """
probs = layers.softmax(logits, axis=1)
probs, indices = layers.topk(probs, self.top_k_num)
probs = probs / layers.reduce_sum(probs, dim=1, keep_dim=True)
preds = []
for p, ids in zip(probs.numpy(), indices.numpy()):
o = np.random.choice(ids, p=p)
preds.append(o)
preds = np.array(preds, dtype="int64")
return fluid.dygraph.to_variable(preds)
class TopPSampling(Sampling):
""" Top-p sampling. """
@classmethod
def add_cmdline_argument(cls, group):
Sampling.add_cmdline_argument(group)
group.add_argument("--top_p_ratio", type=float, default=1.0)
return group
def __init__(self, hparams, bpe):
super().__init__(hparams, bpe)
self.top_p_ratio = hparams.top_p_ratio
return
def _sampling(self, logits):
""" Implement top-k sampling. """
probs = layers.softmax(logits, axis=1)
preds = []
for p in probs.numpy():
ids = np.argsort(-p)
p = p[ids]
c_p = np.cumsum(p)
i = bisect.bisect_right(c_p, self.top_p_ratio) + 1
o = np.random.choice(ids[:i], p=p[:i]/np.sum(p[:i]))
preds.append(o)
preds = np.array(preds, dtype="int64")
return fluid.dygraph.to_variable(preds)
class BeamSearch(Generator):
""" BeamSearch generator. """
@classmethod
def add_cmdline_argument(cls, group):
group.add_argument("--beam_size", type=int, default=5,
help="The beam size in beam search.")
group.add_argument("--length_average", type=str2bool, default=False,
help="Whether to use length average.")
group.add_argument("--length_penalty", type=float, default=-1.0,
help="The parameter(alpha) of length penalty.")
group.add_argument("--ignore_unk", type=str2bool, default=True,
help="Whether to ignore unkown token in generation.")
return group
def __init__(self, hparams, bpe):
super().__init__(hparams, bpe)
self.beam_size = hparams.beam_size
self.length_average = hparams.length_average
self.length_penalty = hparams.length_penalty
self.ignore_unk = hparams.ignore_unk
return
......@@ -159,21 +385,25 @@ class BeamSearch(object):
# previous token is [PAD] or [EOS]
pre_eos_mask = F.equal(pre_ids, self.eos_id) + F.equal(pre_ids, self.pad_id)
scores = scores * (1 - pre_eos_mask) + \
layers.expand(pre_eos_mask, [1, 1, self.vocab_size]) * scores_after_end
node_scores, node_preds = layers.topk(scores, beam_size)
if self.length_average:
sequence_scores = layers.scale(sequence_scores, (step - 1.0) / step)
scores = layers.scale(scores, 1.0 / step)
scores = layers.elementwise_add(scores, sequence_scores, axis=0)
else:
scores = layers.elementwise_add(scores, sequence_scores, axis=0)
scaled_value = pre_eos_mask + (1 - pre_eos_mask) * (1 - 1 / step)
sequence_scores = F.unsqueeze(sequence_scores, [2]) * scaled_value
scaled_value = pre_eos_mask + (1 - pre_eos_mask) * (1 / step)
scores = scores * scaled_value
elif self.length_penalty >= 0.0:
scaled_value = pre_eos_mask + (1 - pre_eos_mask) * \
(math.pow((4 + step) / (5 + step), self.length_penalty))
sequence_scores = layers.elementwise_mul(scaled_value, sequence_scores, axis=0)
scaled_value = pre_eos_mask + (1 - pre_eos_mask) * \
(math.pow(1 / (5 + step), self.length_penalty))
scores = scores * scaled_value
scores = layers.elementwise_add(scores, sequence_scores, axis=0)
scores = layers.reshape(scores, shape=[batch_size, beam_size * self.vocab_size])
topk_scores, topk_indices = layers.topk(scores, self.beam_size)
topk_scores, topk_indices = layers.topk(scores, beam_size)
vocab_size = layers.fill_constant(shape=[1], dtype="int64", value=self.vocab_size)
parent_idx = layers.elementwise_floordiv(topk_indices, vocab_size)
preds = layers.elementwise_mod(topk_indices, vocab_size)
......@@ -208,3 +438,8 @@ class BeamSearch(object):
"scores": sequence_scores[:, -1]
}
return results
BeamSearch.register("BeamSearch")
GreedySampling.register("GreedySampling")
TopKSampling.register("TopKSampling")
TopPSampling.register("TopPSampling")
......@@ -23,14 +23,39 @@ class ModelBase(fluid.dygraph.Layer):
"""
Basic model wrapper for static graph and dygrpah.
"""
_registry = dict()
@classmethod
def register(cls, name):
ModelBase._registry[name] = cls
return
@staticmethod
def by_name(name):
return ModelBase._registry[name]
@staticmethod
def create(name_scope, hparams, *args, **kwargs):
model_cls = ModelBase.by_name(hparams.model)
return model_cls(name_scope, hparams, *args, **kwargs)
@classmethod
def add_cmdline_argument(cls, parser):
""" Add cmdline argument. """
group = parser.add_argument_group("Model")
group.add_argument("--init_checkpoint", type=str, default=None)
group.add_argument("--model", type=str, default="UnifiedTransformer",
choices=["UnifiedTransformer"])
args, _ = parser.parse_known_args()
model_cls = ModelBase.by_name(args.model)
model_cls.add_cmdline_argument(group)
return group
def __init__(self, name_scope, hparams):
super().__init__(name_scope)
self.init_checkpoint = hparams.init_checkpoint
return
def __call__(self, *args, **kwargs):
""" Re-implement __call__ function in dygraph mode. """
if not self._built:
......
......@@ -16,11 +16,11 @@ Embedder class.
"""
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import modules.functions as F
from paddle.fluid.dygraph import Embedding
from paddle.fluid.dygraph import Layer
import paddle.fluid.layers as layers
import plato.modules.functions as F
class Embedder(Layer):
......
......@@ -16,11 +16,11 @@ FeedForward class.
"""
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import modules.functions as F
from paddle.fluid.dygraph import FC
from paddle.fluid.dygraph import Layer
import paddle.fluid.layers as layers
import plato.modules.functions as F
class FeedForward(Layer):
......
......@@ -22,6 +22,7 @@ import paddle.fluid.layers as layers
def unsqueeze(input, axes):
""" Implement unsqueeze in dygraph mode. """
# return layers.unsqueeze(input, axes)
# op:unsqueeze has bug in dygraph
axes = [axis if axis >= 0 else axis + len(input.shape) + 1 for axis in axes]
axes = sorted(axes, reverse=True)
......@@ -33,8 +34,9 @@ def unsqueeze(input, axes):
def gumbel_softmax(input, tau=1, eps=1e-10):
""" Basic implement of gumbel_softmax. """
U = layers.uniform_random(input.shape, dtype=input.dtype, min=0.0, max=1.0)
U.stop_gradient = True
U = fluid.dygraph.to_variable(np.random.rand(*input.shape))
# U = layers.uniform_random(input.shape, dtype=input.dtype, min=0.0, max=1.0)
# U.stop_gradient = True
gumbel = 0.0 - layers.log(eps - layers.log(U + eps))
y = input + gumbel
return layers.softmax(y / tau)
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
LayerNorm layer.
"""
# from paddle.fluid.dygraph import LayerNorm
from six.moves import reduce
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.dygraph import Layer
import logging
class LayerNorm(Layer):
""" Implement LayerNorm in dygraph mode. """
def __init__(self,
name_scope,
scale=True,
shift=True,
begin_norm_axis=1,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
act=None):
super().__init__(name_scope)
self._scale = scale
self._shift = shift
self._begin_norm_axis = begin_norm_axis
self._epsilon = epsilon
self._param_attr = param_attr
self._bias_attr = bias_attr
self._act = act
return
def _build_once(self, input):
""" Create parameters. """
self._dtype = self._helper.input_dtype(input)
input_shape = input.shape
param_shape = [
reduce(lambda x, y: x * y, input_shape[self._begin_norm_axis:])
]
if self._scale:
self._scale_w = self.create_parameter(
attr=self._param_attr,
shape=param_shape,
dtype=self._dtype,
default_initializer=fluid.initializer.Constant(1.0))
else:
if self._param_attr:
logging.warn("param_attr are only avaliable with scale is True")
if self._shift:
assert self._bias_attr is not False
self._bias_w = self.create_parameter(
attr=self._bias_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=True)
else:
if self._bias_attr:
logging.warn("bias_attr are only avaliable with shift is True")
return
def forward(self, x):
""" Forward process of LayerNorm. """
mean = layers.reduce_mean(x,
dim=list(range(self._begin_norm_axis, len(x.shape))),
keep_dim=True)
shift_x = layers.elementwise_sub(x=x, y=mean, axis=0)
variance = layers.reduce_mean(layers.square(shift_x),
dim=list(range(self._begin_norm_axis, len(x.shape))),
keep_dim=True)
r_stdev = layers.rsqrt(variance + self._epsilon)
norm_x = layers.elementwise_mul(x=shift_x, y=r_stdev, axis=0)
out = layers.elementwise_mul(x=norm_x, y=self._scale_w, axis=-1)
out = layers.elementwise_add(x=out, y=self._bias_w, axis=-1)
return out
......@@ -16,11 +16,11 @@ MultiheadAttention class.
"""
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import modules.functions as F
from paddle.fluid.dygraph import Layer
from paddle.fluid.dygraph import FC
import paddle.fluid.layers as layers
import plato.modules.functions as F
class MultiheadAttention(Layer):
......
......@@ -24,7 +24,7 @@ from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
import paddle.fluid.framework as framework
from paddle.fluid.layers import collective
import paddle.fluid.dygraph.base as base
from paddle.fluid.dygraph.base import to_variable, no_grad
ParallelStrategy = core.ParallelStrategy
......@@ -179,7 +179,7 @@ class DataParallel(layers.Layer):
if not self._is_data_parallel_mode():
return loss
loss_scale = base.to_variable(
loss_scale = to_variable(
np.array([self._strategy.nranks]).astype("float32"))
loss_scale.stop_gradient = True
loss = loss / loss_scale
......@@ -214,6 +214,7 @@ class DataParallel(layers.Layer):
for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
nn.reshape(x=g_var, shape=g_shape, inplace=True)
@no_grad
def apply_collective_grads(self):
"""
AllReduce the Parameters' gradient.
......
......@@ -16,14 +16,14 @@ TransformerBlock class.
"""
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from modules.feedforward import FeedForward
from modules.multihead_attention import MultiheadAttention
import modules.functions as F
from paddle.fluid.dygraph import FC
from paddle.fluid.dygraph import Layer
from paddle.fluid.dygraph import LayerNorm
import paddle.fluid.layers as layers
from plato.modules.feedforward import FeedForward
from plato.modules.layer_norm import LayerNorm
from plato.modules.multihead_attention import MultiheadAttention
import plato.modules.functions as F
class TransformerBlock(Layer):
......
......@@ -22,16 +22,17 @@ import sys
import time
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from tqdm import tqdm
from args import str2bool
from dataloader import DataLoader
from metrics.metrics_tracker import MetricsTracker
from metrics.metrics import bleu
from metrics.metrics import distinct
import modules.parallel as parallel
from plato.args import str2bool
from plato.data.data_loader import DataLoader
from plato.metrics.metrics_tracker import MetricsTracker
from plato.metrics.metrics import bleu
from plato.metrics.metrics import distinct
import plato.modules.parallel as parallel
def get_logger(log_path, name="default"):
......@@ -54,7 +55,10 @@ def get_logger(log_path, name="default"):
def evaluate_generation_result(results):
tgt = [result["tgt"].split(" ") for result in results]
pred = [result["preds"][np.argmax(result["scores"])] for result in results]
pred = [result["preds"][np.argmax(result["scores"])]
if isinstance(result["preds"], list)
else result["preds"]
for result in results]
pred = [p.split(" ") for p in pred]
metrics = {}
metrics_tracker = MetricsTracker()
......@@ -78,7 +82,12 @@ def evaluate_generation_result(results):
def save(model, model_path):
if isinstance(model, parallel.DataParallel):
model = model._layers
dygraph.save_persistables(model.state_dict(), model_path, optimizers=model.optimizer)
if hasattr(fluid, "save_dygraph"):
# >= 1.6.0 compatible
fluid.save_dygraph(model.state_dict(), model_path)
fluid.save_dygraph(model.optimizer.state_dict(), model_path)
else:
dygraph.save_persistables(model.state_dict(), model_path, optimizers=model.optimizer)
return
......@@ -115,10 +124,11 @@ class Trainer(object):
# Use data distributed
if hparams.use_data_distributed:
strategy = parallel.prepare_context()
parallel_model = parallel.DataParallel(model, strategy)
model.before_backward_fn = parallel_model.scale_loss
model.after_backward_fn = parallel_model.apply_collective_grads
model = parallel_model
if strategy is not None:
parallel_model = parallel.DataParallel(model, strategy)
model.before_backward_fn = parallel_model.scale_loss
model.after_backward_fn = parallel_model.apply_collective_grads
model = parallel_model
self.model = model
self.to_tensor = to_tensor
......@@ -143,7 +153,8 @@ class Trainer(object):
self.train_summary = {}
self.valid_summary = {}
self.metrics_tracker = MetricsTracker()
self.batch_metrics_tracker = MetricsTracker()
self.token_metrics_tracker = MetricsTracker()
self.best_valid_metric = float("inf" if self.is_decreased_valid_metric else "-inf")
self.epoch = 0
......@@ -167,33 +178,44 @@ class Trainer(object):
"""
self.epoch += 1
num_batches = len(train_iter)
self.metrics_tracker.clear()
self.batch_metrics_tracker.clear()
self.token_metrics_tracker.clear()
times = []
for batch_id, (batch, batch_size) in enumerate(train_iter, 1):
batch = type(batch)(map(lambda kv: (kv[0], self.to_tensor(kv[1])), batch.items()))
batch["epoch"] = self.epoch
batch["num_steps"] = self.batch_num
# measure data loading time
# Do a training iteration
start_time = time.time()
metrics = self.model(batch, is_training=True)
token_num = metrics.pop("token_num", None)
elapsed = time.time() - start_time
times.append(elapsed)
self.metrics_tracker.update(metrics, batch_size)
batch_metrics = {k: v for k, v in metrics.items() if "token" not in k}
token_metrics = {k: v for k, v in metrics.items() if "token" in k}
self.batch_metrics_tracker.update(batch_metrics, batch_size)
self.token_metrics_tracker.update(token_metrics, token_num)
self.batch_num += 1
if self.log_steps and batch_id % self.log_steps == 0:
metrics_message = self.metrics_tracker.value()
batch_metrics_message = self.batch_metrics_tracker.value()
token_metrics_message = self.token_metrics_tracker.value()
message_prefix = f"[Train][{self.epoch}][{batch_id}/{num_batches}]"
avg_time = f"AVG_Time-{sum(times[-self.log_steps:]) / self.log_steps:.3f}"
message = " ".join([message_prefix, metrics_message, avg_time])
message = " ".join([message_prefix, batch_metrics_message, token_metrics_message,
avg_time])
self.logger.info(message)
if self.save_summary:
with self.summary_logger.mode("train"):
for k, v in self.metrics_tracker.items():
for k, v in self.batch_metrics_tracker.items():
if k not in self.train_summary:
self.train_summary[k] = self.summary_logger.scalar(k)
scalar = self.train_summary[k]
scalar.add_record(self.batch_num, v)
for k, v in self.token_metrics_tracker.items():
if k not in self.train_summary:
self.train_summary[k] = self.summary_logger.scalar(k)
scalar = self.train_summary[k]
......@@ -226,9 +248,11 @@ class Trainer(object):
"""
self.logger.info("Generation starts ...")
infer_save_file = os.path.join(self.save_dir, f"infer_{self.epoch}.result.json")
# Inference
infer_results = []
batch_cnt = 0
begin_time = time.time()
for batch, batch_size in tqdm(data_iter, total=num_batches):
batch = type(batch)(map(lambda kv: (kv[0], self.to_tensor(kv[1])), batch.items()))
......@@ -264,7 +288,8 @@ class Trainer(object):
infer_metrics_tracker = evaluate_generation_result(infer_results)
metrics_message = infer_metrics_tracker.summary()
message_prefix = f"[Infer][{self.epoch}]"
message = " ".join([message_prefix, metrics_message])
time_cost = f"TIME-{time.time() - begin_time:.3f}"
message = " ".join([message_prefix, metrics_message, time_cost])
self.logger.info(message)
return
......@@ -282,42 +307,56 @@ class Trainer(object):
need_save = need_save and parallel.Env().local_rank == 0
# Evaluation
metrics_tracker = MetricsTracker()
begin_time = time.time()
batch_metrics_tracker = MetricsTracker()
token_metrics_tracker = MetricsTracker()
for batch, batch_size in data_iter:
batch = type(batch)(map(lambda kv: (kv[0], self.to_tensor(kv[1])), batch.items()))
metrics = self.model(batch, is_training=False)
metrics_tracker.update(metrics, batch_size)
metrics_message = metrics_tracker.summary()
token_num = int(metrics.pop("token_num"))
batch_metrics = {k: v for k, v in metrics.items() if "token" not in k}
token_metrics = {k: v for k, v in metrics.items() if "token" in k}
batch_metrics_tracker.update(batch_metrics, batch_size)
token_metrics_tracker.update(token_metrics, token_num)
batch_metrics_message = batch_metrics_tracker.summary()
token_metrics_message = token_metrics_tracker.summary()
message_prefix = f"[Valid][{self.epoch}]"
message = " ".join([message_prefix, metrics_message])
time_cost = f"TIME-{time.time() - begin_time:.3f}"
message = " ".join([message_prefix, batch_metrics_message, token_metrics_message, time_cost])
self.logger.info(message)
# Check valid metric
cur_valid_metric = metrics_tracker.get(self.valid_metric_name)
if self.is_decreased_valid_metric:
is_best = cur_valid_metric < self.best_valid_metric
else:
is_best = cur_valid_metric > self.best_valid_metric
if is_best and need_save:
# Save current best model
self.best_valid_metric = cur_valid_metric
best_model_path = os.path.join(self.save_dir, "best.model")
save(self.model, best_model_path)
self.logger.info(
f"Saved best model to '{best_model_path}' with new best valid metric "
f"{self.valid_metric_name.upper()}-{self.best_valid_metric:.3f}")
# Save checkpoint
if self.save_checkpoint and need_save:
model_file = os.path.join(self.save_dir, f"epoch_{self.epoch}.model")
save(self.model, model_file)
if self.save_summary and need_save:
with self.summary_logger.mode("valid"):
for k, v in self.metrics_tracker.items():
if k not in self.valid_summary:
self.valid_summary[k] = self.summary_logger.scalar(k)
scalar = self.valid_summary[k]
scalar.add_record(self.batch_num, v)
if need_save:
# Check valid metric
cur_valid_metric = batch_metrics_tracker.get(self.valid_metric_name)
if self.is_decreased_valid_metric:
is_best = cur_valid_metric < self.best_valid_metric
else:
is_best = cur_valid_metric > self.best_valid_metric
if is_best:
# Save current best model
self.best_valid_metric = cur_valid_metric
best_model_path = os.path.join(self.save_dir, "best.model")
save(self.model, best_model_path)
self.logger.info(
f"Saved best model to '{best_model_path}' with new best valid metric "
f"{self.valid_metric_name.upper()}-{self.best_valid_metric:.3f}")
# Save checkpoint
if self.save_checkpoint:
model_file = os.path.join(self.save_dir, f"epoch_{self.epoch}.model")
save(self.model, model_file)
if self.save_summary:
with self.summary_logger.mode("valid"):
for k, v in self.batch_metrics_tracker.items():
if k not in self.valid_summary:
self.valid_summary[k] = self.summary_logger.scalar(k)
scalar = self.valid_summary[k]
scalar.add_record(self.batch_num, v)
for k, v in self.token_metrics_tracker.items():
if k not in self.valid_summary:
self.valid_summary[k] = self.summary_logger.scalar(k)
scalar = self.valid_summary[k]
scalar.add_record(self.batch_num, v)
return
......@@ -18,10 +18,10 @@ Preprocess script.
import os
import argparse
from args import str2bool
from args import parse_args
from dataset import Dataset
from field import BPETextField
from plato.args import str2bool
from plato.args import parse_args
from plato.data.dataset import Dataset
from plato.data.field import BPETextField
def main():
......@@ -35,15 +35,15 @@ def main():
raw_train_file = os.path.join(args.data_dir, "dial.train")
raw_valid_file = os.path.join(args.data_dir, "dial.valid")
raw_test_file = os.path.join(args.data_dir, "dial.test")
train_file = raw_train_file + ".jsonl"
valid_file = raw_valid_file + ".jsonl"
test_file = raw_test_file + ".jsonl"
train_file = raw_train_file + f".{args.tokenizer_type}.jsonl"
valid_file = raw_valid_file + f".{args.tokenizer_type}.jsonl"
test_file = raw_test_file + f".{args.tokenizer_type}.jsonl"
bpe = BPETextField(args.BPETextField)
BUILD_EXAMPLES_FN = {
"multi": bpe.build_examples_multi_turn,
"multi_knowledge": bpe.build_examples_multi_turn_with_knoledge
"multi_knowledge": bpe.build_examples_multi_turn_with_knowledge
}
build_examples_fn = BUILD_EXAMPLES_FN[args.data_type]
......
......@@ -22,16 +22,16 @@ import os
import numpy as np
import paddle.fluid as fluid
from args import parse_args
from args import str2bool
from dataloader import DataLoader
from dataset import Dataset
from dataset import LazyDataset
from field import BPETextField
from trainer import Trainer
from models.unified_transformer import UnifiedTransformer
from models.generator import BeamSearch
import modules.parallel as parallel
from plato.args import parse_args
from plato.args import str2bool
from plato.data.data_loader import DataLoader
from plato.data.dataset import Dataset
from plato.data.dataset import LazyDataset
from plato.data.field import BPETextField
from plato.trainer import Trainer
from plato.models.model_base import ModelBase
from plato.models.generator import Generator
import plato.modules.parallel as parallel
def main():
......@@ -39,21 +39,28 @@ def main():
parser.add_argument("--do_train", type=str2bool, default=False,
help="Whether to run trainning.")
parser.add_argument("--do_valid", type=str2bool, default=False,
parser.add_argument("--do_test", type=str2bool, default=False,
help="Whether to run evaluation on the test dataset.")
parser.add_argument("--do_infer", type=str2bool, default=False,
help="Whether to run inference on the test dataset.")
parser.add_argument("--num_infer_batches", type=int, default=None,
help="The number of batches need to infer.\n"
"Stay 'None': infer on entrie test dataset.")
parser.add_argument("--hparams_file", type=str, default=None,
help="Loading hparams setting from file(.json format).")
BPETextField.add_cmdline_argument(parser)
Dataset.add_cmdline_argument(parser)
Trainer.add_cmdline_argument(parser)
UnifiedTransformer.add_cmdline_argument(parser)
BeamSearch.add_cmdline_argument(parser)
ModelBase.add_cmdline_argument(parser)
Generator.add_cmdline_argument(parser)
hparams = parse_args(parser)
if hparams.hparams_file and os.path.exists(hparams.hparams_file):
print(f"Loading hparams from {hparams.hparams_file} ...")
hparams.load(hparams.hparams_file)
print(f"Loaded hparams from {hparams.hparams_file}")
print(json.dumps(hparams, indent=2))
if not os.path.exists(hparams.save_dir):
......@@ -63,7 +70,7 @@ def main():
bpe = BPETextField(hparams.BPETextField)
hparams.Model.num_token_embeddings = bpe.vocab_size
generator = BeamSearch(bpe, hparams.Generator)
generator = Generator.create(hparams.Generator, bpe=bpe)
COLLATE_FN = {
"multi": bpe.collate_fn_multi_turn,
......@@ -74,22 +81,22 @@ def main():
# Loading datasets
if hparams.do_train:
raw_train_file = os.path.join(hparams.data_dir, "dial.train")
train_file = raw_train_file + ".jsonl"
train_file = raw_train_file + f".{hparams.tokenizer_type}.jsonl"
assert os.path.exists(train_file), f"{train_file} isn't exist"
train_dataset = LazyDataset(train_file)
train_loader = DataLoader(train_dataset, hparams.Trainer, collate_fn=collate_fn)
train_loader = DataLoader(train_dataset, hparams.Trainer, collate_fn=collate_fn, is_train=True)
raw_valid_file = os.path.join(hparams.data_dir, "dial.valid")
valid_file = raw_valid_file + ".jsonl"
valid_file = raw_valid_file + f".{hparams.tokenizer_type}.jsonl"
assert os.path.exists(valid_file), f"{valid_file} isn't exist"
valid_dataset = LazyDataset(valid_file)
valid_loader = DataLoader(valid_dataset, hparams.Trainer, collate_fn=collate_fn)
if hparams.do_infer or hparams.do_valid:
if hparams.do_infer or hparams.do_test:
raw_test_file = os.path.join(hparams.data_dir, "dial.test")
test_file = raw_test_file + ".jsonl"
test_file = raw_test_file + f".{hparams.tokenizer_type}.jsonl"
assert os.path.exists(test_file), f"{test_file} isn't exist"
test_dataset = LazyDataset(test_file)
test_loader = DataLoader(test_dataset, hparams.Trainer, collate_fn=collate_fn, is_test=True)
test_loader = DataLoader(test_dataset, hparams.Trainer, collate_fn=collate_fn, is_test=hparams.do_infer)
def to_tensor(array):
array = np.expand_dims(array, -1)
......@@ -102,7 +109,7 @@ def main():
with fluid.dygraph.guard(place):
# Construct Model
model = UnifiedTransformer("Model", generator, hparams)
model = ModelBase.create("Model", hparams, generator=generator)
# Construct Trainer
trainer = Trainer(model, to_tensor, hparams.Trainer)
......@@ -112,7 +119,7 @@ def main():
for epoch in range(hparams.num_epochs):
trainer.train_epoch(train_loader, valid_loader)
if hparams.do_valid:
if hparams.do_test:
# Validation process
trainer.evaluate(test_loader, need_save=False)
......
......@@ -2,7 +2,7 @@
set -ux
SAVE_DIR=outputs/DSTC7_AVSD.infer
VOCAB_PATH=data/vocab.txt
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/DSTC7_AVSD
INIT_CHECKPOINT=outputs/DSTC7_AVSD/best.model
DATA_TYPE=multi_knowledge
......@@ -15,13 +15,11 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
if [[ ! -e $DATA_DIR/dial.test.jsonl ]]; then
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
fi
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
python -u \
./run.py \
......@@ -29,7 +27,7 @@ python -u \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 2 \
--batch_size 4 \
--num_type_embeddings 3 \
--use_discriminator true \
--init_checkpoint $INIT_CHECKPOINT \
......
......@@ -2,7 +2,7 @@
set -ux
SAVE_DIR=outputs/DSTC7_AVSD
VOCAB_PATH=data/vocab.txt
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/DSTC7_AVSD
INIT_CHECKPOINT=model/PLATO
DATA_TYPE=multi_knowledge
......@@ -33,7 +33,7 @@ python -u \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 8 \
--batch_size 4 \
--valid_steps 2000 \
--num_type_embeddings 3 \
--use_discriminator true \
......
#!/bin/bash
set -ux
SAVE_DIR=outputs/DailyDialog.baseline.infer
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/DailyDialog
INIT_CHECKPOINT=outputs/DailyDialog.baseline/best.model
DATA_TYPE=multi
# CUDA environment settings.
export CUDA_VISIBLE_DEVICES=0
# Paddle environment settings.
export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
python -u \
./run.py \
--do_infer true \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 48 \
--num_latent 0 \
--num_type_embeddings 2 \
--init_checkpoint $INIT_CHECKPOINT \
--length_average true \
--save_dir $SAVE_DIR
#!/bin/bash
set -ux
SAVE_DIR=outputs/DailyDialog.baseline
VOCAB_PATH=model-baseline/Bert/vocab.txt
DATA_DIR=data/DailyDialog
INIT_CHECKPOINT=model-baseline/PLATO.baseline
DATA_TYPE=multi
USE_VISUALDL=false
# CUDA environment settings.
export CUDA_VISIBLE_DEVICES=2
# Paddle environment settings.
export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
if [[ "$USE_VISUALDL" = true ]]; then
visualdl --logdir=$SAVE_DIR/summary --port=8083 --host=`hostname` &
VISUALDL_PID=$!
fi
python -u \
./run.py \
--do_train true \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 2 \
--valid_steps 2000 \
--num_type_embeddings 2 \
--num_latent 0 \
--num_epoch 20 \
--lr 1e-5 \
--save_checkpoint false \
--save_summary $USE_VISUALDL \
--init_checkpoint $INIT_CHECKPOINT \
--save_dir $SAVE_DIR
if [[ $USE_VISUALDL = true ]]; then
kill $VISUALDL_PID
fi
......@@ -2,7 +2,7 @@
set -ux
SAVE_DIR=outputs/DailyDialog.infer
VOCAB_PATH=data/vocab.txt
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/DailyDialog
INIT_CHECKPOINT=outputs/DailyDialog/best.model
DATA_TYPE=multi
......@@ -15,13 +15,11 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
if [[ ! -e $DATA_DIR/dial.test.jsonl ]]; then
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
fi
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
python -u \
./run.py \
......@@ -29,8 +27,9 @@ python -u \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 2 \
--batch_size 4 \
--num_type_embeddings 2 \
--num_latent 20 \
--use_discriminator true \
--init_checkpoint $INIT_CHECKPOINT \
--save_dir $SAVE_DIR
#!/bin/bash
set -ux
SAVE_DIR=outputs/DailyDialog
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/DailyDialog
INIT_CHECKPOINT=model/PLATO
DATA_TYPE=multi
USE_VISUALDL=false
# CUDA environment settings.
export CUDA_VISIBLE_DEVICES=0,1
# Paddle environment settings.
export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
if [[ ! -e $DATA_DIR/dial.train.jsonl ]]; then
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
fi
if [[ "$USE_VISUALDL" = true ]]; then
visualdl --logdir=$SAVE_DIR/summary --port=8083 --host=`hostname` &
VISUALDL_PID=$!
fi
python -m \
paddle.distributed.launch \
--log_dir $SAVE_DIR \
--started_port 8888 \
./run.py \
--use_data_distributed true \
--do_train true \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 6 \
--valid_steps 2000 \
--num_type_embeddings 2 \
--use_discriminator true \
--num_epoch 20 \
--lr 1e-5 \
--save_checkpoint false \
--save_summary $USE_VISUALDL \
--init_checkpoint $INIT_CHECKPOINT \
--save_dir $SAVE_DIR
if [[ $USE_VISUALDL = true ]]; then
kill $VISUALDL_PID
fi
#!/bin/bash
set -ux
SAVE_DIR=outputs/DailyDialog.infer
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/DailyDialog
INIT_CHECKPOINT=outputs/DailyDialog/best.model
DATA_TYPE=multi
# CUDA environment settings.
export CUDA_VISIBLE_DEVICES=0
# Paddle environment settings.
export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
if [[ ! -e $DATA_DIR/dial.test.jsonl ]]; then
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
fi
python -u \
./run.py \
--do_infer true \
--generator TopKSampling \
--top_k_num 10 \
--sampling_temperate 0.8 \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 16 \
--num_type_embeddings 2 \
--use_discriminator true \
--init_checkpoint $INIT_CHECKPOINT \
--save_dir $SAVE_DIR
......@@ -2,7 +2,7 @@
set -ux
SAVE_DIR=outputs/DailyDialog
VOCAB_PATH=data/vocab.txt
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/DailyDialog
INIT_CHECKPOINT=model/PLATO
DATA_TYPE=multi
......@@ -16,13 +16,11 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
if [[ ! -e $DATA_DIR/dial.train.jsonl ]]; then
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
fi
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
if [[ "$USE_VISUALDL" = true ]]; then
visualdl --logdir=$SAVE_DIR/summary --port=8083 --host=`hostname` &
......@@ -35,7 +33,7 @@ python -u \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 12 \
--batch_size 6 \
--valid_steps 2000 \
--num_type_embeddings 2 \
--use_discriminator true \
......
......@@ -2,7 +2,7 @@
set -ux
SAVE_DIR=outputs/PersonaChat.infer
VOCAB_PATH=data/vocab.txt
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/PersonaChat
INIT_CHECKPOINT=outputs/PersonaChat/best.model
DATA_TYPE=multi_knowledge
......@@ -15,13 +15,11 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.1
export FLAGS_eager_delete_scope=True
export FLAGS_eager_delete_tensor_gb=0.0
if [[ ! -e $DATA_DIR/dial.test.jsonl ]]; then
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
fi
python -u \
./preprocess.py \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE
python -u \
./run.py \
......
......@@ -2,7 +2,7 @@
set -ux
SAVE_DIR=outputs/PersonaChat
VOCAB_PATH=data/vocab.txt
VOCAB_PATH=model/Bert/vocab.txt
DATA_DIR=data/PersonaChat
INIT_CHECKPOINT=model/PLATO
DATA_TYPE=multi_knowledge
......@@ -33,7 +33,7 @@ python -u \
--vocab_path $VOCAB_PATH \
--data_dir $DATA_DIR \
--data_type $DATA_TYPE \
--batch_size 12 \
--batch_size 4 \
--valid_steps 2000 \
--num_type_embeddings 3 \
--use_discriminator true \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册