Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
a87a3c96
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a87a3c96
编写于
5月 24, 2017
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"update comment"
上级
561b6c82
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
42 addition
and
18 deletion
+42
-18
ltr/lambdaRank.py
ltr/lambdaRank.py
+28
-6
ltr/ranknet.py
ltr/ranknet.py
+14
-12
未找到文件。
ltr/lambdaRank.py
浏览文件 @
a87a3c96
...
...
@@ -8,6 +8,15 @@ import functools
def
lambdaRank
(
input_dim
):
"""
lambdaRank is a ListWise Rank Model, input data and label must be sequence
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
dense_vector_sequence format
[[f, ...], [f, ...], ...], f is represent for an float or int number
"""
label
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
dense_vector_sequence
(
1
))
data
=
paddle
.
layer
.
data
(
"data"
,
...
...
@@ -16,14 +25,24 @@ def lambdaRank(input_dim):
# hidden layer
hd1
=
paddle
.
layer
.
fc
(
input
=
data
,
size
=
128
,
act
=
paddle
.
activation
.
Tanh
(),
param_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.01
))
hd2
=
paddle
.
layer
.
fc
(
input
=
hd1
,
size
=
10
,
act
=
paddle
.
activation
.
Tanh
(),
param_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.01
))
output
=
paddle
.
layer
.
fc
(
input
=
hd
1
,
input
=
hd
2
,
size
=
1
,
act
=
paddle
.
activation
.
Linear
(),
param_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.01
))
# evaluator
evaluator
=
paddle
.
evaluator
.
auc
(
input
=
output
,
label
=
label
)
# cost layer
cost
=
paddle
.
layer
.
lambda_cost
(
input
=
output
,
score
=
label
,
NDCG_num
=
6
,
max_sort_size
=-
1
)
return
cost
,
output
...
...
@@ -39,7 +58,7 @@ def train_lambdaRank(num_passes):
paddle
.
reader
.
shuffle
(
fill_default_train
,
buf_size
=
100
),
batch_size
=
32
)
test_reader
=
paddle
.
batch
(
fill_default_test
,
batch_size
=
32
)
# mq2007 input_dim = 46, dense format
# mq2007 input_dim = 46, dense format
input_dim
=
46
cost
,
output
=
lambdaRank
(
input_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
...
...
@@ -83,20 +102,23 @@ def lambdaRank_infer(pass_id):
infer_query_id
=
None
infer_data
=
[]
infer_data_num
=
1
000
infer_data_num
=
1
fill_default_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"listwise"
)
for
label
,
querylist
in
fill_default_test
():
infer_data
.
append
(
querylist
)
if
len
(
infer_data
)
==
infer_data_num
:
break
# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
predicitons
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
for
i
,
score
in
enumerate
(
predicitons
):
print
score
print
i
,
score
if
__name__
==
'__main__'
:
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
4
)
train_lambdaRank
(
100
)
lambdaRank_infer
(
pass_id
=
2
)
train_lambdaRank
(
2
)
lambdaRank_infer
(
pass_id
=
1
)
ltr/ranknet.py
浏览文件 @
a87a3c96
import
os
,
sys
import
os
import
sys
import
gzip
import
functools
import
paddle.v2
as
paddle
...
...
@@ -37,7 +38,7 @@ def half_ranknet(name_prefix, input_dim):
def
ranknet
(
input_dim
):
# label layer
label
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
integer_value
(
1
))
label
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
dense_vector
(
1
))
# reuse the parameter in half_ranknet
output_left
=
half_ranknet
(
"left"
,
input_dim
)
...
...
@@ -56,7 +57,7 @@ def train_ranknet(num_passes):
batch_size
=
100
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mq2007
.
test
,
batch_size
=
100
)
# mq2007 feature_dim = 46, dense format
# mq2007 feature_dim = 46, dense format
# fc hidden_dim = 128
feature_dim
=
46
cost
=
ranknet
(
feature_dim
)
...
...
@@ -106,10 +107,9 @@ def ranknet_infer(pass_id):
gzip
.
open
(
"ranknet_params_%d.tar.gz"
%
(
pass_id
-
1
)))
# load data of same query and relevance documents, need ranknet to rank these candidates
infer_query_id
=
None
infer_query_id
=
[]
infer_data
=
[]
infer_score_list
=
[]
infer_data_num
=
1000
infer_doc_index
=
[]
# convert to mq2007 built-in data format
# <query_id> <relevance_score> <feature_vector>
...
...
@@ -117,17 +117,19 @@ def ranknet_infer(pass_id):
paddle
.
dataset
.
mq2007
.
test
,
format
=
"plain_txt"
)
for
query_id
,
relevance_score
,
feature_vector
in
plain_txt_test
():
if
infer_query_id
==
None
:
infer_query_id
=
query_id
elif
infer_query_id
!=
query_id
:
break
infer_query_id
.
append
(
query_id
)
infer_data
.
append
(
feature_vector
)
predicitons
=
paddle
.
infer
(
# predict score of infer_data document. Re-sort the document base on predict score
# in descending order. then we build the ranking documents
scores
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
for
query_id
,
score
in
zip
(
infer_query_id
,
scores
):
print
"query_id : "
,
query_id
,
" ranknet rank document order : "
,
score
if
__name__
==
'__main__'
:
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
4
)
pass_num
=
10
pass_num
=
2
train_ranknet
(
pass_num
)
ranknet_infer
(
pass_id
=
pass_num
-
1
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录