未验证 提交 a40349a4 编写于 作者: R ruri 提交者: GitHub

Unify model name (#3316)

上级 f10df497
...@@ -334,7 +334,7 @@ PaddlePaddle/Models ImageClassification 支持自定义数据 ...@@ -334,7 +334,7 @@ PaddlePaddle/Models ImageClassification 支持自定义数据
|[SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar) | 79.52% | 94.75% | 10.345 | 7.662 | |[SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar) | 79.52% | 94.75% | 10.345 | 7.662 |
|[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44% | 93.96% | 14.916 | 12.126 | |[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44% | 93.96% | 14.916 | 12.126 |
|[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12% | 94.20% | 30.085 | 24.110 | |[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12% | 94.20% | 30.085 | 24.110 |
|[SENet_154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet_154_vd_pretrained.tar) | 81.40% | 95.48% | 71.892 | 64.855 | |[SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar) | 81.40% | 95.48% | 71.892 | 64.855 |
### Inception Series ### Inception Series
| Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | | Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
......
...@@ -316,7 +316,7 @@ Pretrained models can be downloaded by clicking related model names. ...@@ -316,7 +316,7 @@ Pretrained models can be downloaded by clicking related model names.
|[SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar) | 79.52% | 94.75% | 10.345 | 7.662 | |[SE_ResNet50_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar) | 79.52% | 94.75% | 10.345 | 7.662 |
|[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44% | 93.96% | 14.916 | 12.126 | |[SE_ResNeXt50_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar) | 78.44% | 93.96% | 14.916 | 12.126 |
|[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12% | 94.20% | 30.085 | 24.110 | |[SE_ResNeXt101_32x4d](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar) | 79.12% | 94.20% | 30.085 | 24.110 |
|[SENet_154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet_154_vd_pretrained.tar) | 81.40% | 95.48% | 71.892 | 64.855 | |[SENet154_vd](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar) | 81.40% | 95.48% | 71.892 | 64.855 |
### Inception Series ### Inception Series
| Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | | Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
......
...@@ -13,8 +13,8 @@ ...@@ -13,8 +13,8 @@
#limitations under the License. #limitations under the License.
from .alexnet import AlexNet from .alexnet import AlexNet
from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1 from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x1_0, MobileNetV1_x0_75, MobileNetV1
from .mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0 from .mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2_x1_0, MobileNetV2_x1_5, MobileNetV2_x2_0, MobileNetV2
from .mobilenet_v3 import MobileNetV3_small_x0_25, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_25, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25 from .mobilenet_v3 import MobileNetV3_small_x0_25, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_25, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
from .googlenet import GoogLeNet from .googlenet import GoogLeNet
from .vgg import VGG11, VGG13, VGG16, VGG19 from .vgg import VGG11, VGG13, VGG16, VGG19
...@@ -32,7 +32,7 @@ from .shufflenet_v2_swish import ShuffleNetV2_swish, ShuffleNetV2_x0_5_swish, Sh ...@@ -32,7 +32,7 @@ from .shufflenet_v2_swish import ShuffleNetV2_swish, ShuffleNetV2_x0_5_swish, Sh
from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2 from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2
from .fast_imagenet import FastImageNet from .fast_imagenet import FastImageNet
from .xception import Xception41, Xception65, Xception71 from .xception import Xception41, Xception65, Xception71
from .xception_deeplab import Xception41_deeplab , Xception65_deeplab , Xception71_deeplab from .xception_deeplab import Xception41_deeplab, Xception65_deeplab, Xception71_deeplab
from .densenet import DenseNet121, DenseNet161, DenseNet169, DenseNet201, DenseNet264 from .densenet import DenseNet121, DenseNet161, DenseNet169, DenseNet201, DenseNet264
from .squeezenet import SqueezeNet1_0, SqueezeNet1_1 from .squeezenet import SqueezeNet1_0, SqueezeNet1_1
from .darknet import DarkNet53 from .darknet import DarkNet53
......
...@@ -20,7 +20,10 @@ import paddle.fluid as fluid ...@@ -20,7 +20,10 @@ import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
__all__ = ['MobileNetV1', 'MobileNetV1_x0_25', 'MobileNetV1_x0_5', 'MobileNetV1_x0_75'] __all__ = [
'MobileNetV1', 'MobileNetV1_x0_25', 'MobileNetV1_x0_5', 'MobileNetV1_x1_0',
'MobileNetV1_x0_75'
]
class MobileNetV1(): class MobileNetV1():
...@@ -205,6 +208,11 @@ def MobileNetV1_x0_5(): ...@@ -205,6 +208,11 @@ def MobileNetV1_x0_5():
return model return model
def MobileNetV1_x1_0():
model = MobileNetV1(scale=1.0)
return model
def MobileNetV1_x0_75(): def MobileNetV1_x0_75():
model = MobileNetV1(scale=0.75) model = MobileNetV1(scale=0.75)
return model return model
......
...@@ -21,8 +21,8 @@ from paddle.fluid.param_attr import ParamAttr ...@@ -21,8 +21,8 @@ from paddle.fluid.param_attr import ParamAttr
__all__ = [ __all__ = [
'MobileNetV2_x0_25', 'MobileNetV2_x0_5' 'MobileNetV2_x0_25', 'MobileNetV2_x0_5'
'MobileNetV2_x0_75', 'MobileNetV2', 'MobileNetV2_x1_5', 'MobileNetV2_x0_75', 'MobileNetV2_x1_0', 'MobileNetV2_x1_5',
'MobileNetV2_x2_0', 'MobileNetV2_x2_0', 'MobileNetV2'
] ]
...@@ -215,12 +215,11 @@ def MobileNetV2_x0_75(): ...@@ -215,12 +215,11 @@ def MobileNetV2_x0_75():
return model return model
def MobileNetV2(): def MobileNetV2_x1_0():
model = MobileNetV2(scale=1.0) model = MobileNetV2(scale=1.0)
return model return model
def MobileNetV2_x1_5(): def MobileNetV2_x1_5():
model = MobileNetV2(scale=1.5) model = MobileNetV2(scale=1.5)
return model return model
...@@ -229,3 +228,8 @@ def MobileNetV2_x1_5(): ...@@ -229,3 +228,8 @@ def MobileNetV2_x1_5():
def MobileNetV2_x2_0(): def MobileNetV2_x2_0():
model = MobileNetV2(scale=2.0) model = MobileNetV2(scale=2.0)
return model return model
def MobileNetV2():
model = MobileNetV2(scale=1.0)
return model
...@@ -7,7 +7,7 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.98 ...@@ -7,7 +7,7 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.98
python train.py \ python train.py \
--model=MobileNetV1_x1_0 \ --model=MobileNetV1 \
--batch_size=256 \ --batch_size=256 \
--total_images=1281167 \ --total_images=1281167 \
--class_dim=1000 \ --class_dim=1000 \
......
...@@ -7,7 +7,7 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.98 ...@@ -7,7 +7,7 @@ export FLAGS_fraction_of_gpu_memory_to_use=0.98
python train.py \ python train.py \
--model=MobileNetV2_x1_0 \ --model=MobileNetV2 \
--batch_size=500 \ --batch_size=500 \
--total_images=1281167 \ --total_images=1281167 \
--class_dim=1000 \ --class_dim=1000 \
......
...@@ -40,7 +40,7 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化 ...@@ -40,7 +40,7 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化
| [Inceptionv4](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将Inception模块与Residual Connection进行结合,通过ResNet的结构极大地加速训练并获得性能的提升 | ImageNet-2012验证集 | 80.77%/95.26% | | [Inceptionv4](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将Inception模块与Residual Connection进行结合,通过ResNet的结构极大地加速训练并获得性能的提升 | ImageNet-2012验证集 | 80.77%/95.26% |
| [MobileNetV1](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将传统的卷积结构改造成两层卷积结构的网络,在基本不影响准确率的前提下大大减少计算时间,更适合移动端和嵌入式视觉应用 | ImageNet-2012验证集 | 70.99%/89.68% | | [MobileNetV1](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将传统的卷积结构改造成两层卷积结构的网络,在基本不影响准确率的前提下大大减少计算时间,更适合移动端和嵌入式视觉应用 | ImageNet-2012验证集 | 70.99%/89.68% |
| [MobileNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | MobileNet结构的微调,直接在thinner的bottleneck层上进行skip learning连接以及对bottleneck layer不进行ReLu非线性处理可取得更好的结果 | ImageNet-2012验证集 | 72.15%/90.65% | | [MobileNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | MobileNet结构的微调,直接在thinner的bottleneck层上进行skip learning连接以及对bottleneck layer不进行ReLu非线性处理可取得更好的结果 | ImageNet-2012验证集 | 72.15%/90.65% |
| [SENet_154_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在ResNeXt 基础、上加入了SE(Sequeeze-and-Excitation)模块,提高了识别准确率,在ILSVRC 2017 的分类项目中取得了第一名 | ImageNet-2012验证集 | 81.40%/95.48% | | [SENet154_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在ResNeXt 基础、上加入了SE(Sequeeze-and-Excitation)模块,提高了识别准确率,在ILSVRC 2017 的分类项目中取得了第一名 | ImageNet-2012验证集 | 81.40%/95.48% |
| [ShuffleNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | ECCV2018,轻量级CNN网络,在速度和准确度之间做了很好地平衡。在同等复杂度下,比ShuffleNet和MobileNetv2更准确,更适合移动端以及无人车领域 | ImageNet-2012验证集 | 70.03%/89.17% | | [ShuffleNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | ECCV2018,轻量级CNN网络,在速度和准确度之间做了很好地平衡。在同等复杂度下,比ShuffleNet和MobileNetv2更准确,更适合移动端以及无人车领域 | ImageNet-2012验证集 | 70.03%/89.17% |
更多图像分类模型请参考[Image Classification](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) 更多图像分类模型请参考[Image Classification](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册