Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
a3ed9b00
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3ed9b00
编写于
5月 11, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine docs of reader in Transformer by following comments
上级
f0fc20ee
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
45 addition
and
49 deletion
+45
-49
fluid/neural_machine_translation/transformer/reader.py
fluid/neural_machine_translation/transformer/reader.py
+45
-49
未找到文件。
fluid/neural_machine_translation/transformer/reader.py
浏览文件 @
a3ed9b00
...
@@ -64,8 +64,7 @@ class Pool(object):
...
@@ -64,8 +64,7 @@ class Pool(object):
class
DataReader
(
object
):
class
DataReader
(
object
):
"""
"""
The data reader loads all data from files and produces batches of data
The data reader loads all data from files and produces batches of data
in the way corresponding to settings. See the doc of __init__ function
in the way corresponding to settings.
for more setting details.
An example of returning a generator producing data batches whose data
An example of returning a generator producing data batches whose data
is shuffled in each pass and sorted in each pool:
is shuffled in each pass and sorted in each pool:
...
@@ -86,6 +85,50 @@ class DataReader(object):
...
@@ -86,6 +85,50 @@ class DataReader(object):
unk_mark='<unk>',
unk_mark='<unk>',
clip_last_batch=False).batch_generator
clip_last_batch=False).batch_generator
```
```
:param src_vocab_fpath: The path of vocabulary file of source language.
:type src_vocab_fpath: basestring
:param trg_vocab_fpath: The path of vocabulary file of target language.
:type trg_vocab_fpath: basestring
:param fpattern: The pattern to match data files.
:type fpattern: basestring
:param batch_size: The number of sequences contained in a mini-batch.
or the maximum number of tokens (include paddings) contained in a
mini-batch.
:type batch_size: int
:param pool_size: The size of pool buffer.
:type pool_size: int
:param sort_type: The grain to sort by length: 'global' for all
instances; 'pool' for instances in pool; 'none' for no sort.
:type sort_type: basestring
:param clip_last_batch: Whether to clip the last uncompleted batch.
:type clip_last_batch: bool
:param tar_fname: The data file in tar if fpattern matches a tar file.
:type tar_fname: basestring
:param min_length: The minimum length used to filt sequences.
:type min_length: int
:param max_length: The maximum length used to filt sequences.
:type max_length: int
:param shuffle: Whether to shuffle all instances.
:type shuffle: bool
:param shuffle_batch: Whether to shuffle the generated batches.
:type shuffle_batch: bool
:param use_token_batch: Whether to produce batch data according to
token number.
:type use_token_batch: bool
:param delimiter: The delimiter used to split source and target in each
line of data file.
:type delimiter: basestring
:param start_mark: The token representing for the beginning of
sentences in dictionary.
:type start_mark: basestring
:param end_mark: The token representing for the end of sentences
in dictionary.
:type end_mark: basestring
:param unk_mark: The token representing for unknown word in dictionary.
:type unk_mark: basestring
:param seed: The seed for random.
:type seed: int
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
...
@@ -107,53 +150,6 @@ class DataReader(object):
...
@@ -107,53 +150,6 @@ class DataReader(object):
end_mark
=
"<e>"
,
end_mark
=
"<e>"
,
unk_mark
=
"<unk>"
,
unk_mark
=
"<unk>"
,
seed
=
0
):
seed
=
0
):
"""
Load all data from files and set the settings to make mini-batches.
:param src_vocab_fpath: The path of vocabulary file of source language.
:type src_vocab_fpath: basestring
:param trg_vocab_fpath: The path of vocabulary file of target language.
:type trg_vocab_fpath: basestring
:param fpattern: The pattern to match data files.
:type fpattern: basestring
:param batch_size: The number of sequences contained in a mini-batch.
or the maximum number of tokens (include paddings) contained in a
mini-batch.
:type batch_size: int
:param pool_size: The size of pool buffer.
:type pool_size: int
:param sort_type: The grain to sort by length: 'global' for all
instances; 'pool' for instances in pool; 'none' for no sort.
:type sort_type: basestring
:param clip_last_batch: Whether to clip the last uncompleted batch.
:type clip_last_batch: bool
:param tar_fname: The data file in tar if fpattern matches a tar file.
:type tar_fname: basestring
:param min_length: The minimum length used to filt sequences.
:type min_length: int
:param max_length: The maximum length used to filt sequences.
:type max_length: int
:param shuffle: Whether to shuffle all instances.
:type shuffle: bool
:param shuffle_batch: Whether to shuffle the generated batches.
:type shuffle_batch: bool
:param use_token_batch: Whether to produce batch data according to
token number.
:type use_token_batch: bool
:param delimiter: The delimiter used to split source and target in each
line of data file.
:type delimiter: basestring
:param start_mark: The token representing for the beginning of
sentences in dictionary.
:type start_mark: basestring
:param end_mark: The token representing for the end of sentences
in dictionary.
:type end_mark: basestring
:param unk_mark: The token representing for unknown word in dictionary.
:type unk_mark: basestring
:param seed: The seed for random.
:type seed: int
"""
self
.
_src_vocab
=
self
.
load_dict
(
src_vocab_fpath
)
self
.
_src_vocab
=
self
.
load_dict
(
src_vocab_fpath
)
self
.
_only_src
=
True
self
.
_only_src
=
True
if
trg_vocab_fpath
is
not
None
:
if
trg_vocab_fpath
is
not
None
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录