提交 9f2e10db 编写于 作者: G Guanghua Yu 提交者: qingqing01

Add Face detection doc (#3587)

* add face doc
* update face detection readme and add demo jpg
上级 12d9a640
English | [简体中文](README_cn.md)
# FaceDetection
The goal of FaceDetection is to provide efficient and high-speed face detection solutions,
including cutting-edge and classic models.
<div align="center">
<img src="../../demo/output/12_Group_Group_12_Group_Group_12_935.jpg" />
</div>
## Data Pipline
We use the [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/) to carry out the training
and testing of the model, the official website gives detailed data introduction.
- WIDER Face data source:
Loads `wider_face` type dataset with directory structures like this:
```
dataset/wider_face/
├── wider_face_split
│ ├── wider_face_train_bbx_gt.txt
│ ├── wider_face_val_bbx_gt.txt
├── WIDER_train
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_100.jpg
│ │ │ ├── 0_Parade_marchingband_1_381.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
├── WIDER_val
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_1004.jpg
│ │ │ ├── 0_Parade_marchingband_1_1045.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
```
- Download dataset manually:
On the other hand, to download the WIDER FACE dataset, run the following commands:
```
cd dataset/wider_face && ./download.sh
```
- Download dataset automatically:
If a training session is started but the dataset is not setup properly
(e.g, not found in dataset/wider_face), PaddleDetection can automatically
download them from [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/),
the decompressed datasets will be cached in ~/.cache/paddle/dataset/ and can be discovered
automatically subsequently.
### Data Augmentation
- **Data-anchor-sampling:** Randomly transform the scale of the image to a certain range of scales,
greatly enhancing the scale change of the face. The specific operation is to obtain $v=\sqrt{width * height}$
according to the randomly selected face height and width, and judge the value of `v` in which interval of
`[16,32,64,128]`. Assuming `v=45` && `32<v<64`, and any value of `[16,32,64]` is selected with a probability
of uniform distribution. If `64` is selected, the face's interval is selected in `[64 / 2, min(v * 2, 64 * 2)]`.
- **Other methods:** Including `RandomDistort`,`ExpandImage`,`RandomInterpImage`,`RandomFlipImage` etc.
Please refer to [DATA.md](../../docs/DATA.md#APIs) for details.
## Benchmark and Model Zoo
Supported architectures is shown in the below table, please refer to
[Algorithm Description](#Algorithm-Description) for details of the algorithm.
| | Original | Lite <sup>[1](#lite)</sup> | NAS <sup>[2](#nas)</sup> |
|:------------------------:|:--------:|:--------------------------:|:------------------------:|
| [BlazeFace](#BlazeFace) | ✓ | ✓ | ✓ |
| [FaceBoxes](#FaceBoxes) | ✓ | ✓ | x |
<a name="lite">[1]</a> `Lite` edition means reduces the number of network layers and channels.
<a name="nas">[2]</a> `NAS` edition means use `Neural Architecture Search` algorithm to
optimized network structure.
**Todo List:**
- [ ] HamBox
- [ ] Pyramidbox
### Model Zoo
#### mAP in WIDER FACE
| Architecture | Type | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set |
|:------------:|:--------:|:----:|:-------:|:-------:|:--------:|:----------:|:--------:|
| BlazeFace | Original | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** |
| BlazeFace | Lite | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 |
| BlazeFace | NAS | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 |
| FaceBoxes | Original | 640 | 8 | 32w | 0.875 | 0.848 | 0.568 |
| FaceBoxes | Lite | 640 | 8 | 32w | 0.898 | 0.872 | 0.752 |
**NOTES:**
- Get mAP in `Easy/Medium/Hard Set` by multi-scale evaluation in `tools/face_eval.py`.
For details can refer to [Evaluation](#Evaluate-on-the-WIDER-FACE).
- BlazeFace-Lite Training and Testing ues [blazeface.yml](../../configs/face_detection/blazeface.yml)
configs file and set `lite_edition: true`.
#### mAP in FDDB
| Architecture | Type | Size | DistROC | ContROC |
|:------------:|:--------:|:----:|:-------:|:-------:|
| BlazeFace | Original | 640 | **0.992** | **0.762** |
| BlazeFace | Lite | 640 | 0.990 | 0.756 |
| BlazeFace | NAS | 640 | 0.981 | 0.741 |
| FaceBoxes | Original | 640 | 0.985 | 0.731 |
| FaceBoxes | Lite | 640 | 0.987 | 0.741 |
**NOTES:**
- Get mAP by multi-scale evaluation on the FDDB dataset.
For details can refer to [Evaluation](#Evaluate-on-the-FDDB).
#### Infer Time and Model Size comparison
| Architecture | Type | Size | P4 (ms) | CPU (ms) | ARM (ms) | File size (MB) | Flops |
|:------------:|:--------:|:----:|:---------:|:--------:|:----------:|:--------------:|:---------:|
| BlazeFace | Original | 128 | - | - | - | - | - |
| BlazeFace | Lite | 128 | - | - | - | - | - |
| BlazeFace | NAS | 128 | - | - | - | - | - |
| FaceBoxes | Original | 128 | - | - | - | - | - |
| FaceBoxes | Lite | 128 | - | - | - | - | - |
| BlazeFace | Original | 320 | - | - | - | - | - |
| BlazeFace | Lite | 320 | - | - | - | - | - |
| BlazeFace | NAS | 320 | - | - | - | - | - |
| FaceBoxes | Original | 320 | - | - | - | - | - |
| FaceBoxes | Lite | 320 | - | - | - | - | - |
| BlazeFace | Original | 640 | - | - | - | - | - |
| BlazeFace | Lite | 640 | - | - | - | - | - |
| BlazeFace | NAS | 640 | - | - | - | - | - |
| FaceBoxes | Original | 640 | - | - | - | - | - |
| FaceBoxes | Lite | 640 | - | - | - | - | - |
**NOTES:**
- CPU: i5-7360U @ 2.30GHz. Single core and single thread.
## Get Started
`Training` and `Inference` please refer to [GETTING_STARTED.md](../../docs/GETTING_STARTED.md)
- **NOTES:** Currently we do not support evaluation in training.
### Evaluation
```
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/face_eval.py -c configs/face_detection/blazeface.yml
```
- Optional arguments
- `-d` or `--dataset_dir`: Dataset path, same as dataset_dir of configs. Such as: `-d dataset/wider_face`.
- `-f` or `--output_eval`: Evaluation file directory, default is `output/pred`.
- `-e` or `--eval_mode`: Evaluation mode, include `widerface` and `fddb`, default is `widerface`.
After the evaluation is completed, the test result in txt format will be generated in `output/pred`,
and then mAP will be calculated according to different data sets:
#### Evaluate on the WIDER FACE
- Download the official evaluation script to evaluate the AP metrics:
```
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
```
- Modify the result path and the name of the curve to be drawn in `eval_tools/wider_eval.m`:
```
# Modify the folder name where the result is stored.
pred_dir = './pred';
# Modify the name of the curve to be drawn
legend_name = 'Fluid-BlazeFace';
```
- `wider_eval.m` is the main execution program of the evaluation module. The run command is as follows:
```
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
```
#### Evaluate on the FDDB
- Download the official dataset and evaluation script to evaluate the ROC metrics:
```
#external link to the Faces in the Wild data set
wget http://tamaraberg.com/faceDataset/originalPics.tar.gz
#The annotations are split into ten folds. See README for details.
wget http://vis-www.cs.umass.edu/fddb/FDDB-folds.tgz
#information on directory structure and file formats
wget http://vis-www.cs.umass.edu/fddb/README.txt
```
- Install OpenCV: Requires [OpenCV library](http://sourceforge.net/projects/opencvlibrary/)
If the utility 'pkg-config' is not available for your operating system,
edit the Makefile to manually specify the OpenCV flags as following:
```
INCS = -I/usr/local/include/opencv
LIBS = -L/usr/local/lib -lcxcore -lcv -lhighgui -lcvaux -lml
```
- Compile FDDB evaluation code: execute `make` in evaluation folder.
- Generate full image path list and groundtruth in FDDB-folds. The run command is as follows:
```
cat `ls|grep -v"ellipse"` > filePath.txt` and `cat *ellipse* > fddb_annotFile.txt`
```
- Evaluation
Finally evaluation command is:
```
./evaluate -a ./FDDB/FDDB-folds/fddb_annotFile.txt \
-d DETECTION_RESULT.txt -f 0 \
-i ./FDDB -l ./FDDB/FDDB-folds/filePath.txt \
-r ./OUTPUT_DIR -z .jpg
```
**NOTES:** The interpretation of the argument can be performed by `./evaluate --help`.
## Algorithm Description
### BlazeFace
**Introduction:**
[BlazeFace](https://arxiv.org/abs/1907.05047) is Google Research published face detection model.
It's lightweight but good performance, and tailored for mobile GPU inference. It runs at a speed
of 200-1000+ FPS on flagship devices.
**Particularity:**
- Anchor scheme stops at 8×8(input 128x128), 6 anchors per pixel at that resolution.
- 5 single, and 6 double BlazeBlocks: 5×5 depthwise convs, same accuracy with fewer layers.
- Replace the non-maximum suppression algorithm with a blending strategy that estimates the
regression parameters of a bounding box as a weighted mean between the overlapping predictions.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: Replace 5x5 conv with 3x3 conv, fewer network layers and conv channels.
- NAS: use `Neural Architecture Search` algorithm to optimized network structure,
less network layer and conv channel number than `Lite`.
### FaceBoxes
**Introduction:**
[FaceBoxes](https://arxiv.org/abs/1708.05234) which named A CPU Real-time Face Detector
with High Accuracy is face detector proposed by Shifeng Zhang, with high performance on
both speed and accuracy. This paper is published by IJCB(2017).
**Particularity:**
- Anchor scheme stops at 20x20, 10x10, 5x5, which network input size is 640x640,
including 3, 1, 1 anchors per pixel at each resolution. The corresponding densities
are 1, 2, 4(20x20), 4(10x10) and 4(5x5).
- 2 convs with CReLU, 2 poolings, 3 inceptions and 2 convs with ReLU.
- Use density prior box to improve detection accuracy.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: 2 convs with CReLU, 1 pooling, 2 convs with ReLU, 3 inceptions and 2 convs with ReLU.
Anchor scheme stops at 80x80 and 40x40, including 3, 1 anchors per pixel at each resolution.
The corresponding densities are 1, 2, 4(80x80) and 4(40x40), using less conv channel number than lite.
## Contributing
Contributions are highly welcomed and we would really appreciate your feedback!!
......@@ -89,7 +89,7 @@ SSDEvalFeed:
fields: ['image', 'im_id', 'gt_box']
dataset:
dataset_dir: dataset/wider_face
annotation: annotFile.txt #wider_face_split/wider_face_val_bbx_gt.txt
annotation: wider_face_split/wider_face_val_bbx_gt.txt
image_dir: WIDER_val/images
drop_last: false
image_shape: [3, 640, 640]
......
# All rights `PaddleDetection` reserved
# References:
# @inproceedings{yang2016wider,
# Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
# Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
# Title = {WIDER FACE: A Face Detection Benchmark},
# Year = {2016}}
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR"
# Download the data.
echo "Downloading..."
wget https://dataset.bj.bcebos.com/wider_face/WIDER_train.zip
wget https://dataset.bj.bcebos.com/wider_face/WIDER_val.zip
wget https://dataset.bj.bcebos.com/wider_face/wider_face_split.zip
# Extract the data.
echo "Extracting..."
unzip WIDER_train.zip
unzip WIDER_val.zip
unzip wider_face_split.zip
......@@ -126,6 +126,8 @@ the corresponding data stream. Many aspect of the `Reader`, such as storage
location, preprocessing pipeline, acceleration mode can be configured with yaml
files.
### APIs
The main APIs are as follows:
1. Data parsing
......@@ -139,7 +141,7 @@ The main APIs are as follows:
- `source/loader.py`: Roidb dataset parser. [source](../ppdet/data/source/loader.py)
2. Operator
`transform/operators.py`: Contains a variety of data enhancement methods, including:
`transform/operators.py`: Contains a variety of data augmentation methods, including:
- `DecodeImage`: Read images in RGB format.
- `RandomFlipImage`: Horizontal flip.
- `RandomDistort`: Distort brightness, contrast, saturation, and hue.
......@@ -150,7 +152,7 @@ The main APIs are as follows:
- `NormalizeImage`: Normalize image pixel values.
- `NormalizeBox`: Normalize the bounding box.
- `Permute`: Arrange the channels of the image and optionally convert image to BGR format.
- `MixupImage`: Mixup two images with given fraction<sup>[1](#vd)</sup>.
- `MixupImage`: Mixup two images with given fraction<sup>[1](#mix)</sup>.
<a name="mix">[1]</a> Please refer to [this paper](https://arxiv.org/pdf/1710.09412.pdf)
......
......@@ -105,9 +105,9 @@ python ./ppdet/data/tools/generate_data_for_training.py
4. 数据获取接口
为方便训练时的数据获取,我们将多个`data.Dataset`组合在一起构成一个`data.Reader`为用户提供数据,用户只需要调用`Reader.[train|eval|infer]`即可获得对应的数据流。`Reader`支持yaml文件配置数据地址、预处理过程、加速方式等。
主要的APIs如下:
### APIs
主要的APIs如下:
1. 数据解析
......
......@@ -60,6 +60,17 @@ DATASETS = {
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar',
'b6e924de25625d8de591ea690078ad9f', ),
], ["VOCdevkit/VOC_all"]),
'wider_face': ([
(
'https://dataset.bj.bcebos.com/wider_face/WIDER_train.zip',
'3fedf70df600953d25982bcd13d91ba2', ),
(
'https://dataset.bj.bcebos.com/wider_face/WIDER_val.zip',
'dfa7d7e790efa35df3788964cf0bbaea', ),
(
'https://dataset.bj.bcebos.com/wider_face/wider_face_split.zip',
'a4a898d6193db4b9ef3260a68bad0dc7', ),
], ["WIDER_train", "WIDER_val", "wider_face_split"]),
'fruit': ([
(
'https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar',
......@@ -114,7 +125,8 @@ def get_dataset_path(path, annotation, image_dir):
# not match any dataset in DATASETS
raise ValueError("Dataset {} is not valid and cannot parse dataset type "
"'{}' for automaticly downloading, which only supports "
"'voc' and 'coco' currently".format(path, osp.split(path)[-1]))
"'voc' and 'coco' currently".format(path,
osp.split(path)[-1]))
def _merge_voc_dir(data_dir, output_subdir):
......@@ -201,7 +213,7 @@ def _dataset_exists(path, annotation, image_dir):
"""
if not osp.exists(path):
logger.info("Config dataset_dir {} is not exits, "
"dataset config is not valid".format(path))
"dataset config is not valid".format(path))
return False
if annotation:
......@@ -324,7 +336,7 @@ def _decompress(fname):
def _move_and_merge_tree(src, dst):
"""
Move src directory to dst, if dst is already exists,
Move src directory to dst, if dst is already exists,
merge src to dst
"""
if not osp.exists(dst):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册