Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
9be01b91
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9be01b91
编写于
7月 28, 2019
作者:
E
edencfc
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the import path
上级
a488cf69
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
662 addition
and
662 deletion
+662
-662
PaddleCV/PaddleDetection/tools/configure.py
PaddleCV/PaddleDetection/tools/configure.py
+280
-280
PaddleCV/PaddleDetection/tools/eval.py
PaddleCV/PaddleDetection/tools/eval.py
+122
-122
PaddleCV/PaddleDetection/tools/infer.py
PaddleCV/PaddleDetection/tools/infer.py
+260
-260
未找到文件。
PaddleCV/PaddleDetection/tools/configure.py
浏览文件 @
9be01b91
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
re
import
sys
from
argparse
import
ArgumentParser
,
RawDescriptionHelpFormatter
import
yaml
import
sys
sys
.
path
.
append
(
'..'
)
from
ppdet.core.workspace
import
get_registered_modules
,
load_config
from
ppdet.utils.cli
import
ColorTTY
color_tty
=
ColorTTY
()
MISC_CONFIG
=
{
"architecture"
:
"<value>"
,
"max_iters"
:
"<value>"
,
"train_feed"
:
"<value>"
,
"eval_feed"
:
"<value>"
,
"test_feed"
:
"<value>"
,
"pretrain_weights"
:
"<value>"
,
"save_dir"
:
"<value>"
,
"weights"
:
"<value>"
,
"metric"
:
"<value>"
,
"log_smooth_window"
:
20
,
"snapshot_iter"
:
10000
,
"use_gpu"
:
True
,
}
def
dump_value
(
value
):
# XXX this is hackish, but collections.abc is not available in python 2
if
hasattr
(
value
,
'__dict__'
)
or
isinstance
(
value
,
(
dict
,
tuple
,
list
)):
value
=
yaml
.
dump
(
value
,
default_flow_style
=
True
)
value
=
value
.
replace
(
'
\n
'
,
''
)
value
=
value
.
replace
(
'...'
,
''
)
return
"'{}'"
.
format
(
value
)
else
:
# primitive types
return
str
(
value
)
def
dump_config
(
module
,
minimal
=
False
):
args
=
module
.
schema
.
values
()
if
minimal
:
args
=
[
arg
for
arg
in
args
if
not
arg
.
has_default
()]
return
yaml
.
dump
(
{
module
.
name
:
{
arg
.
name
:
arg
.
default
if
arg
.
has_default
()
else
"<value>"
for
arg
in
args
}
},
default_flow_style
=
False
,
default_style
=
''
)
def
list_modules
(
**
kwargs
):
target_category
=
kwargs
[
'category'
]
module_schema
=
get_registered_modules
()
module_by_category
=
{}
for
schema
in
module_schema
.
values
():
category
=
schema
.
category
if
target_category
is
not
None
and
schema
.
category
!=
target_category
:
continue
if
category
not
in
module_by_category
:
module_by_category
[
category
]
=
[
schema
]
else
:
module_by_category
[
category
].
append
(
schema
)
for
cat
,
modules
in
module_by_category
.
items
():
print
(
"Available modules in the category '{}':"
.
format
(
cat
))
print
(
""
)
max_len
=
max
([
len
(
mod
.
name
)
for
mod
in
modules
])
for
mod
in
modules
:
print
(
color_tty
.
green
(
mod
.
name
.
ljust
(
max_len
)),
mod
.
doc
.
split
(
'
\n
'
)[
0
])
print
(
""
)
def
help_module
(
**
kwargs
):
schema
=
get_registered_modules
()[
kwargs
[
'module'
]]
doc
=
schema
.
doc
is
None
and
"Not documented"
or
"{}"
.
format
(
schema
.
doc
)
func_args
=
{
arg
.
name
:
arg
.
doc
for
arg
in
schema
.
schema
.
values
()}
max_len
=
max
([
len
(
k
)
for
k
in
func_args
.
keys
()])
opts
=
"
\n
"
.
join
([
"{} {}"
.
format
(
color_tty
.
green
(
k
.
ljust
(
max_len
)),
v
)
for
k
,
v
in
func_args
.
items
()
])
template
=
dump_config
(
schema
)
print
(
"{}
\n\n
{}
\n\n
{}
\n\n
{}
\n\n
{}
\n\n
{}
\n
{}
\n
"
.
format
(
color_tty
.
bold
(
color_tty
.
blue
(
"MODULE DESCRIPTION:"
)),
doc
,
color_tty
.
bold
(
color_tty
.
blue
(
"MODULE OPTIONS:"
)),
opts
,
color_tty
.
bold
(
color_tty
.
blue
(
"CONFIGURATION TEMPLATE:"
)),
template
,
color_tty
.
bold
(
color_tty
.
blue
(
"COMMAND LINE OPTIONS:"
)),
))
for
arg
in
schema
.
schema
.
values
():
print
(
"--opt {}.{}={}"
.
format
(
schema
.
name
,
arg
.
name
,
dump_value
(
arg
.
default
)
if
arg
.
has_default
()
else
"<value>"
))
def
generate_config
(
**
kwargs
):
minimal
=
kwargs
[
'minimal'
]
modules
=
kwargs
[
'modules'
]
module_schema
=
get_registered_modules
()
visited
=
[]
schema
=
[]
def
walk
(
m
):
if
m
in
visited
:
return
s
=
module_schema
[
m
]
schema
.
append
(
s
)
visited
.
append
(
m
)
for
mod
in
modules
:
walk
(
mod
)
# XXX try to be smart about when to add header,
# if any "architecture" module, is included, head will be added as well
if
any
([
getattr
(
m
,
'category'
,
None
)
==
'architecture'
for
m
in
schema
]):
# XXX for ordered printing
header
=
""
for
k
,
v
in
MISC_CONFIG
.
items
():
header
+=
yaml
.
dump
(
{
k
:
v
},
default_flow_style
=
False
,
default_style
=
''
)
print
(
header
)
for
s
in
schema
:
print
(
dump_config
(
s
,
minimal
))
# FIXME this is pretty hackish, maybe implement a custom YAML printer?
def
analyze_config
(
**
kwargs
):
config
=
load_config
(
kwargs
[
'file'
])
modules
=
get_registered_modules
()
green
=
'___{}___'
.
format
(
color_tty
.
colors
.
index
(
'green'
)
+
31
)
styled
=
{}
for
key
in
config
.
keys
():
if
not
config
[
key
]:
# empty schema
continue
if
key
not
in
modules
and
not
hasattr
(
config
[
key
],
'__dict__'
):
styled
[
key
]
=
config
[
key
]
continue
elif
key
in
modules
:
module
=
modules
[
key
]
else
:
type_name
=
type
(
config
[
key
]).
__name__
if
type_name
in
modules
:
module
=
modules
[
type_name
].
copy
()
module
.
update
({
k
:
v
for
k
,
v
in
config
[
key
].
__dict__
.
items
()
if
k
in
module
.
schema
})
key
+=
" ({})"
.
format
(
type_name
)
default
=
module
.
find_default_keys
()
missing
=
module
.
find_missing_keys
()
mismatch
=
module
.
find_mismatch_keys
()
extra
=
module
.
find_extra_keys
()
dep_missing
=
[]
for
dep
in
module
.
inject
:
if
isinstance
(
module
[
dep
],
str
)
and
module
[
dep
]
!=
'<value>'
:
if
module
[
dep
]
not
in
modules
:
# not a valid module
dep_missing
.
append
(
dep
)
else
:
dep_mod
=
modules
[
module
[
dep
]]
# empty dict but mandatory
if
not
dep_mod
and
dep_mod
.
mandatory
():
dep_missing
.
append
(
dep
)
override
=
list
(
set
(
module
.
keys
())
-
set
(
default
)
-
set
(
extra
)
-
set
(
dep_missing
))
replacement
=
{}
for
name
in
set
(
override
+
default
+
extra
+
mismatch
+
missing
):
new_name
=
name
if
name
in
missing
:
value
=
"<missing>"
else
:
value
=
module
[
name
]
if
name
in
extra
:
value
=
dump_value
(
value
)
+
" <extraneous>"
elif
name
in
mismatch
:
value
=
dump_value
(
value
)
+
" <type mismatch>"
elif
name
in
dep_missing
:
value
=
dump_value
(
value
)
+
" <module config missing>"
elif
name
in
override
and
value
!=
'<missing>'
:
mark
=
green
new_name
=
mark
+
name
replacement
[
new_name
]
=
value
styled
[
key
]
=
replacement
buffer
=
yaml
.
dump
(
styled
,
default_flow_style
=
False
,
default_style
=
''
)
buffer
=
(
re
.
sub
(
r
"<missing>"
,
r
"[31m<missing>[0m"
,
buffer
))
buffer
=
(
re
.
sub
(
r
"<extraneous>"
,
r
"[33m<extraneous>[0m"
,
buffer
))
buffer
=
(
re
.
sub
(
r
"<type mismatch>"
,
r
"[31m<type mismatch>[0m"
,
buffer
))
buffer
=
(
re
.
sub
(
r
"<module config missing>"
,
r
"[31m<module config missing>[0m"
,
buffer
))
buffer
=
re
.
sub
(
r
"___(\d+)___(.*?):"
,
r
"[\1m\2[0m:"
,
buffer
)
print
(
buffer
)
if
__name__
==
'__main__'
:
argv
=
sys
.
argv
[
1
:]
parser
=
ArgumentParser
(
formatter_class
=
RawDescriptionHelpFormatter
)
subparsers
=
parser
.
add_subparsers
(
help
=
'Supported Commands'
)
list_parser
=
subparsers
.
add_parser
(
"list"
,
help
=
"list available modules"
)
help_parser
=
subparsers
.
add_parser
(
"help"
,
help
=
"show detail options for module"
)
generate_parser
=
subparsers
.
add_parser
(
"generate"
,
help
=
"generate configuration template"
)
analyze_parser
=
subparsers
.
add_parser
(
"analyze"
,
help
=
"analyze configuration file"
)
list_parser
.
set_defaults
(
func
=
list_modules
)
help_parser
.
set_defaults
(
func
=
help_module
)
generate_parser
.
set_defaults
(
func
=
generate_config
)
analyze_parser
.
set_defaults
(
func
=
analyze_config
)
list_group
=
list_parser
.
add_mutually_exclusive_group
()
list_group
.
add_argument
(
"-c"
,
"--category"
,
type
=
str
,
default
=
None
,
help
=
"list modules for <category>"
)
help_parser
.
add_argument
(
"module"
,
help
=
"module to show info for"
,
choices
=
list
(
get_registered_modules
().
keys
()))
generate_parser
.
add_argument
(
"modules"
,
nargs
=
'+'
,
help
=
"include these module in generated configuration template"
,
choices
=
list
(
get_registered_modules
().
keys
()))
generate_group
=
generate_parser
.
add_mutually_exclusive_group
()
generate_group
.
add_argument
(
"--minimal"
,
action
=
'store_true'
,
help
=
"only include required options"
)
generate_group
.
add_argument
(
"--full"
,
action
=
'store_false'
,
dest
=
'minimal'
,
help
=
"include all options"
)
analyze_parser
.
add_argument
(
"file"
,
help
=
"configuration file to analyze"
)
if
len
(
sys
.
argv
)
<
2
:
parser
.
print_help
()
sys
.
exit
(
1
)
args
=
parser
.
parse_args
(
argv
)
if
hasattr
(
args
,
'func'
):
args
.
func
(
**
vars
(
args
))
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
re
import
sys
from
argparse
import
ArgumentParser
,
RawDescriptionHelpFormatter
import
yaml
import
sys
sys
.
path
.
append
(
'..'
)
from
ppdet.core.workspace
import
get_registered_modules
,
load_config
from
ppdet.utils.cli
import
ColorTTY
color_tty
=
ColorTTY
()
MISC_CONFIG
=
{
"architecture"
:
"<value>"
,
"max_iters"
:
"<value>"
,
"train_feed"
:
"<value>"
,
"eval_feed"
:
"<value>"
,
"test_feed"
:
"<value>"
,
"pretrain_weights"
:
"<value>"
,
"save_dir"
:
"<value>"
,
"weights"
:
"<value>"
,
"metric"
:
"<value>"
,
"log_smooth_window"
:
20
,
"snapshot_iter"
:
10000
,
"use_gpu"
:
True
,
}
def
dump_value
(
value
):
# XXX this is hackish, but collections.abc is not available in python 2
if
hasattr
(
value
,
'__dict__'
)
or
isinstance
(
value
,
(
dict
,
tuple
,
list
)):
value
=
yaml
.
dump
(
value
,
default_flow_style
=
True
)
value
=
value
.
replace
(
'
\n
'
,
''
)
value
=
value
.
replace
(
'...'
,
''
)
return
"'{}'"
.
format
(
value
)
else
:
# primitive types
return
str
(
value
)
def
dump_config
(
module
,
minimal
=
False
):
args
=
module
.
schema
.
values
()
if
minimal
:
args
=
[
arg
for
arg
in
args
if
not
arg
.
has_default
()]
return
yaml
.
dump
(
{
module
.
name
:
{
arg
.
name
:
arg
.
default
if
arg
.
has_default
()
else
"<value>"
for
arg
in
args
}
},
default_flow_style
=
False
,
default_style
=
''
)
def
list_modules
(
**
kwargs
):
target_category
=
kwargs
[
'category'
]
module_schema
=
get_registered_modules
()
module_by_category
=
{}
for
schema
in
module_schema
.
values
():
category
=
schema
.
category
if
target_category
is
not
None
and
schema
.
category
!=
target_category
:
continue
if
category
not
in
module_by_category
:
module_by_category
[
category
]
=
[
schema
]
else
:
module_by_category
[
category
].
append
(
schema
)
for
cat
,
modules
in
module_by_category
.
items
():
print
(
"Available modules in the category '{}':"
.
format
(
cat
))
print
(
""
)
max_len
=
max
([
len
(
mod
.
name
)
for
mod
in
modules
])
for
mod
in
modules
:
print
(
color_tty
.
green
(
mod
.
name
.
ljust
(
max_len
)),
mod
.
doc
.
split
(
'
\n
'
)[
0
])
print
(
""
)
def
help_module
(
**
kwargs
):
schema
=
get_registered_modules
()[
kwargs
[
'module'
]]
doc
=
schema
.
doc
is
None
and
"Not documented"
or
"{}"
.
format
(
schema
.
doc
)
func_args
=
{
arg
.
name
:
arg
.
doc
for
arg
in
schema
.
schema
.
values
()}
max_len
=
max
([
len
(
k
)
for
k
in
func_args
.
keys
()])
opts
=
"
\n
"
.
join
([
"{} {}"
.
format
(
color_tty
.
green
(
k
.
ljust
(
max_len
)),
v
)
for
k
,
v
in
func_args
.
items
()
])
template
=
dump_config
(
schema
)
print
(
"{}
\n\n
{}
\n\n
{}
\n\n
{}
\n\n
{}
\n\n
{}
\n
{}
\n
"
.
format
(
color_tty
.
bold
(
color_tty
.
blue
(
"MODULE DESCRIPTION:"
)),
doc
,
color_tty
.
bold
(
color_tty
.
blue
(
"MODULE OPTIONS:"
)),
opts
,
color_tty
.
bold
(
color_tty
.
blue
(
"CONFIGURATION TEMPLATE:"
)),
template
,
color_tty
.
bold
(
color_tty
.
blue
(
"COMMAND LINE OPTIONS:"
)),
))
for
arg
in
schema
.
schema
.
values
():
print
(
"--opt {}.{}={}"
.
format
(
schema
.
name
,
arg
.
name
,
dump_value
(
arg
.
default
)
if
arg
.
has_default
()
else
"<value>"
))
def
generate_config
(
**
kwargs
):
minimal
=
kwargs
[
'minimal'
]
modules
=
kwargs
[
'modules'
]
module_schema
=
get_registered_modules
()
visited
=
[]
schema
=
[]
def
walk
(
m
):
if
m
in
visited
:
return
s
=
module_schema
[
m
]
schema
.
append
(
s
)
visited
.
append
(
m
)
for
mod
in
modules
:
walk
(
mod
)
# XXX try to be smart about when to add header,
# if any "architecture" module, is included, head will be added as well
if
any
([
getattr
(
m
,
'category'
,
None
)
==
'architecture'
for
m
in
schema
]):
# XXX for ordered printing
header
=
""
for
k
,
v
in
MISC_CONFIG
.
items
():
header
+=
yaml
.
dump
(
{
k
:
v
},
default_flow_style
=
False
,
default_style
=
''
)
print
(
header
)
for
s
in
schema
:
print
(
dump_config
(
s
,
minimal
))
# FIXME this is pretty hackish, maybe implement a custom YAML printer?
def
analyze_config
(
**
kwargs
):
config
=
load_config
(
kwargs
[
'file'
])
modules
=
get_registered_modules
()
green
=
'___{}___'
.
format
(
color_tty
.
colors
.
index
(
'green'
)
+
31
)
styled
=
{}
for
key
in
config
.
keys
():
if
not
config
[
key
]:
# empty schema
continue
if
key
not
in
modules
and
not
hasattr
(
config
[
key
],
'__dict__'
):
styled
[
key
]
=
config
[
key
]
continue
elif
key
in
modules
:
module
=
modules
[
key
]
else
:
type_name
=
type
(
config
[
key
]).
__name__
if
type_name
in
modules
:
module
=
modules
[
type_name
].
copy
()
module
.
update
({
k
:
v
for
k
,
v
in
config
[
key
].
__dict__
.
items
()
if
k
in
module
.
schema
})
key
+=
" ({})"
.
format
(
type_name
)
default
=
module
.
find_default_keys
()
missing
=
module
.
find_missing_keys
()
mismatch
=
module
.
find_mismatch_keys
()
extra
=
module
.
find_extra_keys
()
dep_missing
=
[]
for
dep
in
module
.
inject
:
if
isinstance
(
module
[
dep
],
str
)
and
module
[
dep
]
!=
'<value>'
:
if
module
[
dep
]
not
in
modules
:
# not a valid module
dep_missing
.
append
(
dep
)
else
:
dep_mod
=
modules
[
module
[
dep
]]
# empty dict but mandatory
if
not
dep_mod
and
dep_mod
.
mandatory
():
dep_missing
.
append
(
dep
)
override
=
list
(
set
(
module
.
keys
())
-
set
(
default
)
-
set
(
extra
)
-
set
(
dep_missing
))
replacement
=
{}
for
name
in
set
(
override
+
default
+
extra
+
mismatch
+
missing
):
new_name
=
name
if
name
in
missing
:
value
=
"<missing>"
else
:
value
=
module
[
name
]
if
name
in
extra
:
value
=
dump_value
(
value
)
+
" <extraneous>"
elif
name
in
mismatch
:
value
=
dump_value
(
value
)
+
" <type mismatch>"
elif
name
in
dep_missing
:
value
=
dump_value
(
value
)
+
" <module config missing>"
elif
name
in
override
and
value
!=
'<missing>'
:
mark
=
green
new_name
=
mark
+
name
replacement
[
new_name
]
=
value
styled
[
key
]
=
replacement
buffer
=
yaml
.
dump
(
styled
,
default_flow_style
=
False
,
default_style
=
''
)
buffer
=
(
re
.
sub
(
r
"<missing>"
,
r
"[31m<missing>[0m"
,
buffer
))
buffer
=
(
re
.
sub
(
r
"<extraneous>"
,
r
"[33m<extraneous>[0m"
,
buffer
))
buffer
=
(
re
.
sub
(
r
"<type mismatch>"
,
r
"[31m<type mismatch>[0m"
,
buffer
))
buffer
=
(
re
.
sub
(
r
"<module config missing>"
,
r
"[31m<module config missing>[0m"
,
buffer
))
buffer
=
re
.
sub
(
r
"___(\d+)___(.*?):"
,
r
"[\1m\2[0m:"
,
buffer
)
print
(
buffer
)
if
__name__
==
'__main__'
:
argv
=
sys
.
argv
[
1
:]
parser
=
ArgumentParser
(
formatter_class
=
RawDescriptionHelpFormatter
)
subparsers
=
parser
.
add_subparsers
(
help
=
'Supported Commands'
)
list_parser
=
subparsers
.
add_parser
(
"list"
,
help
=
"list available modules"
)
help_parser
=
subparsers
.
add_parser
(
"help"
,
help
=
"show detail options for module"
)
generate_parser
=
subparsers
.
add_parser
(
"generate"
,
help
=
"generate configuration template"
)
analyze_parser
=
subparsers
.
add_parser
(
"analyze"
,
help
=
"analyze configuration file"
)
list_parser
.
set_defaults
(
func
=
list_modules
)
help_parser
.
set_defaults
(
func
=
help_module
)
generate_parser
.
set_defaults
(
func
=
generate_config
)
analyze_parser
.
set_defaults
(
func
=
analyze_config
)
list_group
=
list_parser
.
add_mutually_exclusive_group
()
list_group
.
add_argument
(
"-c"
,
"--category"
,
type
=
str
,
default
=
None
,
help
=
"list modules for <category>"
)
help_parser
.
add_argument
(
"module"
,
help
=
"module to show info for"
,
choices
=
list
(
get_registered_modules
().
keys
()))
generate_parser
.
add_argument
(
"modules"
,
nargs
=
'+'
,
help
=
"include these module in generated configuration template"
,
choices
=
list
(
get_registered_modules
().
keys
()))
generate_group
=
generate_parser
.
add_mutually_exclusive_group
()
generate_group
.
add_argument
(
"--minimal"
,
action
=
'store_true'
,
help
=
"only include required options"
)
generate_group
.
add_argument
(
"--full"
,
action
=
'store_false'
,
dest
=
'minimal'
,
help
=
"include all options"
)
analyze_parser
.
add_argument
(
"file"
,
help
=
"configuration file to analyze"
)
if
len
(
sys
.
argv
)
<
2
:
parser
.
print_help
()
sys
.
exit
(
1
)
args
=
parser
.
parse_args
(
argv
)
if
hasattr
(
args
,
'func'
):
args
.
func
(
**
vars
(
args
))
PaddleCV/PaddleDetection/tools/eval.py
浏览文件 @
9be01b91
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
multiprocessing
import
paddle.fluid
as
fluid
import
sys
sys
.
path
.
append
(
'..'
)
from
ppdet.utils.eval_utils
import
parse_fetches
,
eval_run
,
eval_results
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
from
ppdet.modeling.model_input
import
create_feed
from
ppdet.data.data_feed
import
create_reader
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
main
():
"""
Main evaluate function
"""
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
if
cfg
.
use_gpu
:
devices_num
=
fluid
.
core
.
get_cuda_device_count
()
else
:
devices_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
if
'eval_feed'
not
in
cfg
:
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
else
:
eval_feed
=
create
(
cfg
.
eval_feed
)
# define executor
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# build program
model
=
create
(
main_arch
)
startup_prog
=
fluid
.
Program
()
eval_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
eval_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
pyreader
,
feed_vars
=
create_feed
(
eval_feed
)
fetches
=
model
.
eval
(
feed_vars
)
eval_prog
=
eval_prog
.
clone
(
True
)
reader
=
create_reader
(
eval_feed
)
pyreader
.
decorate_sample_list_generator
(
reader
,
place
)
# compile program for multi-devices
if
devices_num
<=
1
:
compile_program
=
fluid
.
compiler
.
CompiledProgram
(
eval_prog
)
else
:
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
False
build_strategy
.
enable_inplace
=
False
compile_program
=
fluid
.
compiler
.
CompiledProgram
(
eval_prog
).
with_data_parallel
(
build_strategy
=
build_strategy
)
# load model
exe
.
run
(
startup_prog
)
if
'weights'
in
cfg
:
checkpoint
.
load_pretrain
(
exe
,
eval_prog
,
cfg
.
weights
)
extra_keys
=
[]
if
'metric'
in
cfg
and
cfg
.
metric
==
'COCO'
:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
keys
,
values
,
cls
=
parse_fetches
(
fetches
,
eval_prog
,
extra_keys
)
results
=
eval_run
(
exe
,
compile_program
,
pyreader
,
keys
,
values
,
cls
)
# evaluation
resolution
=
None
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
resolution
,
FLAGS
.
output_file
)
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"-f"
,
"--output_file"
,
default
=
None
,
type
=
str
,
help
=
"Evaluation file name, default to bbox.json and mask.json."
)
FLAGS
=
parser
.
parse_args
()
main
()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
multiprocessing
import
paddle.fluid
as
fluid
import
sys
sys
.
path
.
append
(
'..'
)
from
ppdet.utils.eval_utils
import
parse_fetches
,
eval_run
,
eval_results
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
from
ppdet.modeling.model_input
import
create_feed
from
ppdet.data.data_feed
import
create_reader
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
main
():
"""
Main evaluate function
"""
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
if
cfg
.
use_gpu
:
devices_num
=
fluid
.
core
.
get_cuda_device_count
()
else
:
devices_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
if
'eval_feed'
not
in
cfg
:
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
else
:
eval_feed
=
create
(
cfg
.
eval_feed
)
# define executor
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# build program
model
=
create
(
main_arch
)
startup_prog
=
fluid
.
Program
()
eval_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
eval_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
pyreader
,
feed_vars
=
create_feed
(
eval_feed
)
fetches
=
model
.
eval
(
feed_vars
)
eval_prog
=
eval_prog
.
clone
(
True
)
reader
=
create_reader
(
eval_feed
)
pyreader
.
decorate_sample_list_generator
(
reader
,
place
)
# compile program for multi-devices
if
devices_num
<=
1
:
compile_program
=
fluid
.
compiler
.
CompiledProgram
(
eval_prog
)
else
:
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
False
build_strategy
.
enable_inplace
=
False
compile_program
=
fluid
.
compiler
.
CompiledProgram
(
eval_prog
).
with_data_parallel
(
build_strategy
=
build_strategy
)
# load model
exe
.
run
(
startup_prog
)
if
'weights'
in
cfg
:
checkpoint
.
load_pretrain
(
exe
,
eval_prog
,
cfg
.
weights
)
extra_keys
=
[]
if
'metric'
in
cfg
and
cfg
.
metric
==
'COCO'
:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
keys
,
values
,
cls
=
parse_fetches
(
fetches
,
eval_prog
,
extra_keys
)
results
=
eval_run
(
exe
,
compile_program
,
pyreader
,
keys
,
values
,
cls
)
# evaluation
resolution
=
None
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
resolution
,
FLAGS
.
output_file
)
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"-f"
,
"--output_file"
,
default
=
None
,
type
=
str
,
help
=
"Evaluation file name, default to bbox.json and mask.json."
)
FLAGS
=
parser
.
parse_args
()
main
()
PaddleCV/PaddleDetection/tools/infer.py
浏览文件 @
9be01b91
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
glob
import
numpy
as
np
from
PIL
import
Image
from
paddle
import
fluid
import
sys
sys
.
path
.
append
(
'..'
)
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.modeling.model_input
import
create_feed
from
ppdet.data.data_feed
import
create_reader
from
ppdet.utils.eval_utils
import
parse_fetches
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
from
ppdet.utils.visualizer
import
visualize_results
import
ppdet.utils.checkpoint
as
checkpoint
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
get_save_image_name
(
output_dir
,
image_path
):
"""
Get save image name from source image path.
"""
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
image_name
=
image_path
.
split
(
'/'
)[
-
1
]
name
,
ext
=
os
.
path
.
splitext
(
image_name
)
return
os
.
path
.
join
(
output_dir
,
"{}"
.
format
(
name
))
+
ext
def
get_test_images
(
infer_dir
,
infer_img
):
"""
Get image path list in TEST mode
"""
assert
infer_img
is
not
None
or
infer_dir
is
not
None
,
\
"--infer_img or --infer_dir should be set"
assert
infer_img
is
None
or
os
.
path
.
isfile
(
infer_img
),
\
"{} is not a file"
.
format
(
infer_img
)
assert
infer_dir
is
None
or
os
.
path
.
isdir
(
infer_dir
),
\
"{} is not a directory"
.
format
(
infer_dir
)
images
=
[]
# infer_img has a higher priority
if
infer_img
and
os
.
path
.
isfile
(
infer_img
):
images
.
append
(
infer_img
)
return
images
infer_dir
=
os
.
path
.
abspath
(
infer_dir
)
assert
os
.
path
.
isdir
(
infer_dir
),
\
"infer_dir {} is not a directory"
.
format
(
infer_dir
)
exts
=
[
'jpg'
,
'jpeg'
,
'png'
,
'bmp'
]
exts
+=
[
ext
.
upper
()
for
ext
in
exts
]
for
ext
in
exts
:
images
.
extend
(
glob
.
glob
(
'{}/*.{}'
.
format
(
infer_dir
,
ext
)))
assert
len
(
images
)
>
0
,
"no image found in {}"
.
format
(
infer_dir
)
logger
.
info
(
"Found {} inference images in total."
.
format
(
len
(
images
)))
return
images
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
v
.
name
)
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feeded_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
target_vars
=
test_fetches
.
values
()
feeded_var_names
=
prune_feed_vars
(
feeded_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Save inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feeded_var_names
,
[
var
.
name
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feeded_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
if
'test_feed'
not
in
cfg
:
test_feed
=
create
(
main_arch
+
'TestFeed'
)
else
:
test_feed
=
create
(
cfg
.
test_feed
)
test_images
=
get_test_images
(
FLAGS
.
infer_dir
,
FLAGS
.
infer_img
)
test_feed
.
dataset
.
add_images
(
test_images
)
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
model
=
create
(
main_arch
)
startup_prog
=
fluid
.
Program
()
infer_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
_
,
feed_vars
=
create_feed
(
test_feed
,
use_pyreader
=
False
)
test_fetches
=
model
.
test
(
feed_vars
)
infer_prog
=
infer_prog
.
clone
(
True
)
reader
=
create_reader
(
test_feed
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_vars
.
values
())
exe
.
run
(
startup_prog
)
if
cfg
.
weights
:
checkpoint
.
load_checkpoint
(
exe
,
infer_prog
,
cfg
.
weights
)
if
FLAGS
.
save_inference_model
:
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
)
# parse infer fetches
extra_keys
=
[]
if
cfg
[
'metric'
]
==
'COCO'
:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
if
cfg
[
'metric'
]
==
'VOC'
:
extra_keys
=
[
'im_id'
]
keys
,
values
,
_
=
parse_fetches
(
test_fetches
,
infer_prog
,
extra_keys
)
# parse dataset category
if
cfg
.
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
bbox2out
,
mask2out
,
get_category_info
if
cfg
.
metric
==
"VOC"
:
from
ppdet.utils.voc_eval
import
bbox2out
,
get_category_info
anno_file
=
getattr
(
test_feed
.
dataset
,
'annotation'
,
None
)
with_background
=
getattr
(
test_feed
,
'with_background'
,
True
)
use_default_label
=
getattr
(
test_feed
,
'use_default_label'
,
False
)
clsid2catid
,
catid2name
=
get_category_info
(
anno_file
,
with_background
,
use_default_label
)
# whether output bbox is normalized in model output layer
is_bbox_normalized
=
False
if
hasattr
(
model
,
'is_bbox_normalized'
)
and
\
callable
(
model
.
is_bbox_normalized
):
is_bbox_normalized
=
model
.
is_bbox_normalized
()
imid2path
=
reader
.
imid2path
for
iter_id
,
data
in
enumerate
(
reader
()):
outs
=
exe
.
run
(
infer_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
values
,
return_numpy
=
False
)
res
=
{
k
:
(
np
.
array
(
v
),
v
.
recursive_sequence_lengths
())
for
k
,
v
in
zip
(
keys
,
outs
)
}
logger
.
info
(
'Infer iter {}'
.
format
(
iter_id
))
bbox_results
=
None
mask_results
=
None
if
'bbox'
in
res
:
bbox_results
=
bbox2out
([
res
],
clsid2catid
,
is_bbox_normalized
)
if
'mask'
in
res
:
mask_results
=
mask2out
([
res
],
clsid2catid
,
model
.
mask_head
.
resolution
)
# visualize result
im_ids
=
res
[
'im_id'
][
0
]
for
im_id
in
im_ids
:
image_path
=
imid2path
[
int
(
im_id
)]
image
=
Image
.
open
(
image_path
).
convert
(
'RGB'
)
image
=
visualize_results
(
image
,
int
(
im_id
),
catid2name
,
FLAGS
.
draw_threshold
,
bbox_results
,
mask_results
,
is_bbox_normalized
)
save_name
=
get_save_image_name
(
FLAGS
.
output_dir
,
image_path
)
logger
.
info
(
"Detection bbox results save in {}"
.
format
(
save_name
))
image
.
save
(
save_name
,
quality
=
95
)
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"--infer_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory for images to perform inference on."
)
parser
.
add_argument
(
"--infer_img"
,
type
=
str
,
default
=
None
,
help
=
"Image path, has higher priority over --infer_dir"
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory for storing the output visualization files."
)
parser
.
add_argument
(
"--draw_threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold to reserve the result for visualization."
)
parser
.
add_argument
(
"--save_inference_model"
,
action
=
'store_true'
,
default
=
False
,
help
=
"Save inference model in output_dir if True."
)
FLAGS
=
parser
.
parse_args
()
main
()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
glob
import
numpy
as
np
from
PIL
import
Image
from
paddle
import
fluid
import
sys
sys
.
path
.
append
(
'..'
)
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.modeling.model_input
import
create_feed
from
ppdet.data.data_feed
import
create_reader
from
ppdet.utils.eval_utils
import
parse_fetches
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
from
ppdet.utils.visualizer
import
visualize_results
import
ppdet.utils.checkpoint
as
checkpoint
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
def
get_save_image_name
(
output_dir
,
image_path
):
"""
Get save image name from source image path.
"""
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
image_name
=
image_path
.
split
(
'/'
)[
-
1
]
name
,
ext
=
os
.
path
.
splitext
(
image_name
)
return
os
.
path
.
join
(
output_dir
,
"{}"
.
format
(
name
))
+
ext
def
get_test_images
(
infer_dir
,
infer_img
):
"""
Get image path list in TEST mode
"""
assert
infer_img
is
not
None
or
infer_dir
is
not
None
,
\
"--infer_img or --infer_dir should be set"
assert
infer_img
is
None
or
os
.
path
.
isfile
(
infer_img
),
\
"{} is not a file"
.
format
(
infer_img
)
assert
infer_dir
is
None
or
os
.
path
.
isdir
(
infer_dir
),
\
"{} is not a directory"
.
format
(
infer_dir
)
images
=
[]
# infer_img has a higher priority
if
infer_img
and
os
.
path
.
isfile
(
infer_img
):
images
.
append
(
infer_img
)
return
images
infer_dir
=
os
.
path
.
abspath
(
infer_dir
)
assert
os
.
path
.
isdir
(
infer_dir
),
\
"infer_dir {} is not a directory"
.
format
(
infer_dir
)
exts
=
[
'jpg'
,
'jpeg'
,
'png'
,
'bmp'
]
exts
+=
[
ext
.
upper
()
for
ext
in
exts
]
for
ext
in
exts
:
images
.
extend
(
glob
.
glob
(
'{}/*.{}'
.
format
(
infer_dir
,
ext
)))
assert
len
(
images
)
>
0
,
"no image found in {}"
.
format
(
infer_dir
)
logger
.
info
(
"Found {} inference images in total."
.
format
(
len
(
images
)))
return
images
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
v
.
name
)
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feeded_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
target_vars
=
test_fetches
.
values
()
feeded_var_names
=
prune_feed_vars
(
feeded_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Save inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feeded_var_names
,
[
var
.
name
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feeded_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
if
'architecture'
in
cfg
:
main_arch
=
cfg
.
architecture
else
:
raise
ValueError
(
"'architecture' not specified in config file."
)
merge_config
(
FLAGS
.
opt
)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
if
'test_feed'
not
in
cfg
:
test_feed
=
create
(
main_arch
+
'TestFeed'
)
else
:
test_feed
=
create
(
cfg
.
test_feed
)
test_images
=
get_test_images
(
FLAGS
.
infer_dir
,
FLAGS
.
infer_img
)
test_feed
.
dataset
.
add_images
(
test_images
)
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
model
=
create
(
main_arch
)
startup_prog
=
fluid
.
Program
()
infer_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
_
,
feed_vars
=
create_feed
(
test_feed
,
use_pyreader
=
False
)
test_fetches
=
model
.
test
(
feed_vars
)
infer_prog
=
infer_prog
.
clone
(
True
)
reader
=
create_reader
(
test_feed
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_vars
.
values
())
exe
.
run
(
startup_prog
)
if
cfg
.
weights
:
checkpoint
.
load_checkpoint
(
exe
,
infer_prog
,
cfg
.
weights
)
if
FLAGS
.
save_inference_model
:
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
)
# parse infer fetches
extra_keys
=
[]
if
cfg
[
'metric'
]
==
'COCO'
:
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
if
cfg
[
'metric'
]
==
'VOC'
:
extra_keys
=
[
'im_id'
]
keys
,
values
,
_
=
parse_fetches
(
test_fetches
,
infer_prog
,
extra_keys
)
# parse dataset category
if
cfg
.
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
bbox2out
,
mask2out
,
get_category_info
if
cfg
.
metric
==
"VOC"
:
from
ppdet.utils.voc_eval
import
bbox2out
,
get_category_info
anno_file
=
getattr
(
test_feed
.
dataset
,
'annotation'
,
None
)
with_background
=
getattr
(
test_feed
,
'with_background'
,
True
)
use_default_label
=
getattr
(
test_feed
,
'use_default_label'
,
False
)
clsid2catid
,
catid2name
=
get_category_info
(
anno_file
,
with_background
,
use_default_label
)
# whether output bbox is normalized in model output layer
is_bbox_normalized
=
False
if
hasattr
(
model
,
'is_bbox_normalized'
)
and
\
callable
(
model
.
is_bbox_normalized
):
is_bbox_normalized
=
model
.
is_bbox_normalized
()
imid2path
=
reader
.
imid2path
for
iter_id
,
data
in
enumerate
(
reader
()):
outs
=
exe
.
run
(
infer_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
values
,
return_numpy
=
False
)
res
=
{
k
:
(
np
.
array
(
v
),
v
.
recursive_sequence_lengths
())
for
k
,
v
in
zip
(
keys
,
outs
)
}
logger
.
info
(
'Infer iter {}'
.
format
(
iter_id
))
bbox_results
=
None
mask_results
=
None
if
'bbox'
in
res
:
bbox_results
=
bbox2out
([
res
],
clsid2catid
,
is_bbox_normalized
)
if
'mask'
in
res
:
mask_results
=
mask2out
([
res
],
clsid2catid
,
model
.
mask_head
.
resolution
)
# visualize result
im_ids
=
res
[
'im_id'
][
0
]
for
im_id
in
im_ids
:
image_path
=
imid2path
[
int
(
im_id
)]
image
=
Image
.
open
(
image_path
).
convert
(
'RGB'
)
image
=
visualize_results
(
image
,
int
(
im_id
),
catid2name
,
FLAGS
.
draw_threshold
,
bbox_results
,
mask_results
,
is_bbox_normalized
)
save_name
=
get_save_image_name
(
FLAGS
.
output_dir
,
image_path
)
logger
.
info
(
"Detection bbox results save in {}"
.
format
(
save_name
))
image
.
save
(
save_name
,
quality
=
95
)
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"--infer_dir"
,
type
=
str
,
default
=
None
,
help
=
"Directory for images to perform inference on."
)
parser
.
add_argument
(
"--infer_img"
,
type
=
str
,
default
=
None
,
help
=
"Image path, has higher priority over --infer_dir"
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory for storing the output visualization files."
)
parser
.
add_argument
(
"--draw_threshold"
,
type
=
float
,
default
=
0.5
,
help
=
"Threshold to reserve the result for visualization."
)
parser
.
add_argument
(
"--save_inference_model"
,
action
=
'store_true'
,
default
=
False
,
help
=
"Save inference model in output_dir if True."
)
FLAGS
=
parser
.
parse_args
()
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录