Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
9a10a366
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9a10a366
编写于
11月 06, 2019
作者:
L
Liufang Sang
提交者:
whs
11月 06, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix icafe 3107 3104 3085 about quantization (#3889)
上级
532ebad1
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
140 addition
and
104 deletion
+140
-104
PaddleCV/PaddleDetection/slim/quantization/README.md
PaddleCV/PaddleDetection/slim/quantization/README.md
+4
-3
PaddleCV/PaddleDetection/slim/quantization/compress.py
PaddleCV/PaddleDetection/slim/quantization/compress.py
+2
-3
PaddleCV/PaddleDetection/slim/quantization/freeze.py
PaddleCV/PaddleDetection/slim/quantization/freeze.py
+0
-13
PaddleCV/PaddleDetection/slim/quantization/yolov3_mobilenet_v1_slim.yaml
...Detection/slim/quantization/yolov3_mobilenet_v1_slim.yaml
+0
-1
PaddleSlim/classification/eval.py
PaddleSlim/classification/eval.py
+16
-11
PaddleSlim/classification/quantization/README.md
PaddleSlim/classification/quantization/README.md
+56
-22
PaddleSlim/classification/quantization/compress.py
PaddleSlim/classification/quantization/compress.py
+14
-2
PaddleSlim/classification/quantization/configs/mobilenet_v1.yaml
...lim/classification/quantization/configs/mobilenet_v1.yaml
+0
-1
PaddleSlim/classification/quantization/configs/mobilenet_v2.yaml
...lim/classification/quantization/configs/mobilenet_v2.yaml
+0
-1
PaddleSlim/classification/quantization/configs/resnet34.yaml
PaddleSlim/classification/quantization/configs/resnet34.yaml
+2
-3
PaddleSlim/classification/quantization/freeze.py
PaddleSlim/classification/quantization/freeze.py
+46
-44
未找到文件。
PaddleCV/PaddleDetection/slim/quantization/README.md
浏览文件 @
9a10a366
...
@@ -4,7 +4,7 @@
...
@@ -4,7 +4,7 @@
## 概述
## 概述
该示例使用PaddleSlim提供的
[
量化压缩策略
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#1-quantization-aware-training%E9%87%8F%E5%8C%96%E4%BB%8B%E7%BB%8D
)
对
分类
模型进行压缩。
该示例使用PaddleSlim提供的
[
量化压缩策略
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#1-quantization-aware-training%E9%87%8F%E5%8C%96%E4%BB%8B%E7%BB%8D
)
对
检测
模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
在阅读该示例前,建议您先了解以下内容:
-
[
检测模型的常规训练方法
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection
)
-
[
检测模型的常规训练方法
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection
)
...
@@ -41,10 +41,11 @@
...
@@ -41,10 +41,11 @@
step1: 设置gpu卡
step1: 设置gpu卡
```
```
export CUDA_VISIBLE_DEVICES=0
export CUDA_VISIBLE_DEVICES=0
,1,2,3,4,5,6,7
```
```
step2: 开始训练
step2: 开始训练
使用PaddleDetection提供的配置文件在用8卡进行训练:
使用PaddleDetection提供的配置文件用8卡进行训练:
```
```
python compress.py \
python compress.py \
...
...
PaddleCV/PaddleDetection/slim/quantization/compress.py
浏览文件 @
9a10a366
...
@@ -49,7 +49,7 @@ from ppdet.data.data_feed import create_reader
...
@@ -49,7 +49,7 @@ from ppdet.data.data_feed import create_reader
from
ppdet.utils.eval_utils
import
parse_fetches
,
eval_results
from
ppdet.utils.eval_utils
import
parse_fetches
,
eval_results
from
ppdet.utils.stats
import
TrainingStats
from
ppdet.utils.stats
import
TrainingStats
from
ppdet.utils.cli
import
ArgsParser
,
print_total_cfg
from
ppdet.utils.cli
import
ArgsParser
,
print_total_cfg
from
ppdet.utils.check
import
check_gpu
,
check_version
from
ppdet.utils.check
import
check_gpu
import
ppdet.utils.checkpoint
as
checkpoint
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.modeling.model_input
import
create_feed
from
ppdet.modeling.model_input
import
create_feed
...
@@ -121,8 +121,7 @@ def main():
...
@@ -121,8 +121,7 @@ def main():
# check if set use_gpu=True in paddlepaddle cpu version
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
check_gpu
(
cfg
.
use_gpu
)
# print_total_cfg(cfg)
#check_version()
if
cfg
.
use_gpu
:
if
cfg
.
use_gpu
:
devices_num
=
fluid
.
core
.
get_cuda_device_count
()
devices_num
=
fluid
.
core
.
get_cuda_device_count
()
else
:
else
:
...
...
PaddleCV/PaddleDetection/slim/quantization/freeze.py
浏览文件 @
9a10a366
...
@@ -195,19 +195,6 @@ def main():
...
@@ -195,19 +195,6 @@ def main():
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
logger
.
info
(
"convert the freezed pass to paddle-lite execution"
)
mobile_pass
=
TransformForMobilePass
()
mobile_pass
.
apply
(
test_graph
)
mobile_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
FLAGS
.
save_path
,
'mobile'
),
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
main_program
=
mobile_program
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
=
ArgsParser
()
...
...
PaddleCV/PaddleDetection/slim/quantization/yolov3_mobilenet_v1_slim.yaml
浏览文件 @
9a10a366
...
@@ -5,7 +5,6 @@ strategies:
...
@@ -5,7 +5,6 @@ strategies:
start_epoch
:
0
start_epoch
:
0
end_epoch
:
4
end_epoch
:
4
float_model_save_path
:
'
./output/yolov3/float'
float_model_save_path
:
'
./output/yolov3/float'
mobile_model_save_path
:
'
./output/yolov3/mobile'
int8_model_save_path
:
'
./output/yolov3/int8'
int8_model_save_path
:
'
./output/yolov3/int8'
weight_bits
:
8
weight_bits
:
8
activation_bits
:
8
activation_bits
:
8
...
...
PaddleSlim/classification/eval.py
浏览文件 @
9a10a366
...
@@ -33,20 +33,23 @@ add_arg('model_name', str, "__model__", "model filename for inference model")
...
@@ -33,20 +33,23 @@ add_arg('model_name', str, "__model__", "model filename for inference model")
add_arg
(
'params_name'
,
str
,
"__params__"
,
"params filename for inference model"
)
add_arg
(
'params_name'
,
str
,
"__params__"
,
"params filename for inference model"
)
# yapf: enable
# yapf: enable
def
eval
(
args
):
def
eval
(
args
):
# parameters from arguments
# parameters from arguments
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
val_program
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
args
.
model_path
,
val_program
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
exe
,
args
.
model_path
,
model_filename
=
args
.
model_name
,
exe
,
params_filename
=
args
.
params_name
)
model_filename
=
args
.
model_name
,
params_filename
=
args
.
params_name
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_target_names
,
program
=
val_program
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_target_names
,
program
=
val_program
)
results
=
[]
results
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
for
batch_id
,
data
in
enumerate
(
val_reader
()):
# top1_acc, top5_acc
# top1_acc, top5_acc
...
@@ -56,8 +59,8 @@ def eval(args):
...
@@ -56,8 +59,8 @@ def eval(args):
label
=
[[
d
[
1
]]
for
d
in
data
]
label
=
[[
d
[
1
]]
for
d
in
data
]
feed_data
=
feeder
.
feed
(
image
)
feed_data
=
feeder
.
feed
(
image
)
pred
=
exe
.
run
(
val_program
,
pred
=
exe
.
run
(
val_program
,
feed
=
feed_data
,
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
pred
=
np
.
array
(
pred
[
0
])
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
...
@@ -68,23 +71,25 @@ def eval(args):
...
@@ -68,23 +71,25 @@ def eval(args):
for
i
in
range
(
len
(
label
)):
for
i
in
range
(
len
(
label
)):
if
label
[
i
][
0
]
in
top_5_pred
[
i
]:
if
label
[
i
][
0
]
in
top_5_pred
[
i
]:
acc_num
+=
1
acc_num
+=
1
top_5
=
acc_num
/
len
(
label
)
top_5
=
float
(
acc_num
)
/
len
(
label
)
results
.
append
([
top_1
,
top_5
])
results
.
append
([
top_1
,
top_5
])
else
:
else
:
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
result
=
exe
.
run
(
val_program
,
result
=
exe
.
run
(
val_program
,
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
results
.
append
(
result
)
results
.
append
(
result
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
print_arguments
(
args
)
print_arguments
(
args
)
eval
(
args
)
eval
(
args
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
()
main
()
PaddleSlim/classification/quantization/README.md
浏览文件 @
9a10a366
>运行该示例前请安装Paddle1.6或更高版本
>运行该示例前请安装Paddle1.6或更高版本
。 本示例中的run.sh脚本仅适用于linux系统,在windows环境下,请参考run.sh内容编写适合windows环境的脚本。
# 分类模型量化压缩示例
# 分类模型量化压缩示例
...
@@ -40,7 +40,7 @@ cost = fluid.layers.cross_entropy(input=out, label=label)
...
@@ -40,7 +40,7 @@ cost = fluid.layers.cross_entropy(input=out, label=label)
-
use_gpu: 是否使用gpu。如果选择使用GPU,请确保当前环境和Paddle版本支持GPU。默认为True。
-
use_gpu: 是否使用gpu。如果选择使用GPU,请确保当前环境和Paddle版本支持GPU。默认为True。
-
batch_size: 在量化之后,对模型进行fine-tune训练时用的batch size。
-
batch_size: 在量化之后,对模型进行fine-tune训练时用的batch size。
-
model: 要压缩的目标模型,该示例支持'MobileNet', 'MobileNetV2'和'ResNet
50
'。
-
model: 要压缩的目标模型,该示例支持'MobileNet', 'MobileNetV2'和'ResNet
34
'。
-
pretrained_model: 预训练模型的路径,可以从
[
这里
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#%E5%B7%B2%E5%8F%91%E5%B8%83%E6%A8%A1%E5%9E%8B%E5%8F%8A%E5%85%B6%E6%80%A7%E8%83%BD
)
下载。
-
pretrained_model: 预训练模型的路径,可以从
[
这里
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#%E5%B7%B2%E5%8F%91%E5%B8%83%E6%A8%A1%E5%9E%8B%E5%8F%8A%E5%85%B6%E6%80%A7%E8%83%BD
)
下载。
-
config_file: 压缩策略的配置文件。
-
config_file: 压缩策略的配置文件。
...
@@ -49,7 +49,7 @@ cost = fluid.layers.cross_entropy(input=out, label=label)
...
@@ -49,7 +49,7 @@ cost = fluid.layers.cross_entropy(input=out, label=label)
### 训练时的模型结构
### 训练时的模型结构
这部分介绍来源于
[
量化low-level API介绍
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api#1-%E9%87%8F%E5%8C%96%E8%AE%AD%E7%BB%83low-level-apis%E4%BB%8B%E7%BB%8D
)
。
这部分介绍来源于
[
量化low-level API介绍
](
https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api#1-%E9%87%8F%E5%8C%96%E8%AE%AD%E7%BB%83low-level-apis%E4%BB%8B%E7%BB%8D
)
。
PaddlePaddle框架中
有四个和量化相关的IrPass, 分别是QuantizationTransformPass、QuantizationFreezePass、ConvertToInt8Pass以及TransformForMobile
Pass。在训练时,对网络应用了QuantizationTransformPass,作用是在网络中的conv2d、depthwise_conv2d、mul等算子的各个输入前插入连续的量化op和反量化op,并改变相应反向算子的某些输入。示例图如下:
PaddlePaddle框架中
和量化相关的IrPass有QuantizationTransformPass、QuantizationFreezePass、ConvertToInt8
Pass。在训练时,对网络应用了QuantizationTransformPass,作用是在网络中的conv2d、depthwise_conv2d、mul等算子的各个输入前插入连续的量化op和反量化op,并改变相应反向算子的某些输入。示例图如下:
<p
align=
"center"
>
<p
align=
"center"
>
<img
src=
"../../docs/images/usage/TransformPass.png"
height=
400
width=
520
hspace=
'10'
/>
<br
/>
<img
src=
"../../docs/images/usage/TransformPass.png"
height=
400
width=
520
hspace=
'10'
/>
<br
/>
...
@@ -65,10 +65,10 @@ PaddlePaddle框架中有四个和量化相关的IrPass, 分别是QuantizationTra
...
@@ -65,10 +65,10 @@ PaddlePaddle框架中有四个和量化相关的IrPass, 分别是QuantizationTra
>注意:配置文件中的信息不会保存在断点中,重启前对配置文件的修改将会生效。
>注意:配置文件中的信息不会保存在断点中,重启前对配置文件的修改将会生效。
### 保存评估和预测模型
### 保存评估和预测模型
如果在配置文件的量化策略中设置了
`float_model_save_path`
,
`int8_model_save_path`
,
`mobile_model_save_path`
, 在训练结束后,会保存模型量化压缩之后用于评估和预测的模型。接下来介绍这三
种模型的区别。
如果在配置文件的量化策略中设置了
`float_model_save_path`
,
`int8_model_save_path`
,在训练结束后,会保存模型量化压缩之后用于评估和预测的模型。接下来介绍这2
种模型的区别。
#### FP32模型
#### FP32模型
在介绍量化训练时的模型结构时介绍了PaddlePaddle框架中
有四个和量化相关的IrPass, 分别是QuantizationTransformPass、QuantizationFreezePass、ConvertToInt8Pass以及TransformForMobile
Pass。FP32预测模型是在应用QuantizationFreezePass并删除eval_program中多余的operators之后,保存的模型。
在介绍量化训练时的模型结构时介绍了PaddlePaddle框架中
和量化相关的IrPass, 有QuantizationTransformPass、QuantizationFreezePass、ConvertToInt8
Pass。FP32预测模型是在应用QuantizationFreezePass并删除eval_program中多余的operators之后,保存的模型。
QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺序,即将类似图1中的量化op和反量化op顺序改变为图2中的布局。除此之外,QuantizationFreezePass还会将
`conv2d`
、
`depthwise_conv2d`
、
`mul`
等算子的权重离线量化为int8_t范围内的值(但数据类型仍为float32),以减少预测过程中对权重的量化操作,示例如图2:
QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺序,即将类似图1中的量化op和反量化op顺序改变为图2中的布局。除此之外,QuantizationFreezePass还会将
`conv2d`
、
`depthwise_conv2d`
、
`mul`
等算子的权重离线量化为int8_t范围内的值(但数据类型仍为float32),以减少预测过程中对权重的量化操作,示例如图2:
...
@@ -86,20 +86,13 @@ QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺
...
@@ -86,20 +86,13 @@ QuantizationFreezePass主要用于改变IrGraph中量化op和反量化op的顺
<strong>
图3:应用ConvertToInt8Pass后的结果
</strong>
<strong>
图3:应用ConvertToInt8Pass后的结果
</strong>
</p>
</p>
#### mobile模型
经TransformForMobilePass转换后,用户可得到兼容
[
paddle-lite
](
https://github.com/PaddlePaddle/Paddle-Lite
)
移动端预测库的量化模型。paddle-mobile中的量化op和反量化op的名称分别为
`quantize`
和
`dequantize`
。
`quantize`
算子和PaddlePaddle框架中的
`fake_quantize_abs_max`
算子簇的功能类似,
`dequantize`
算子和PaddlePaddle框架中的
`fake_dequantize_max_abs`
算子簇的功能相同。若选择paddle-mobile执行量化训练输出的模型,则需要将
`fake_quantize_abs_max`
等算子改为
`quantize`
算子以及将
`fake_dequantize_max_abs`
等算子改为
`dequantize`
算子,示例如图4:
<p
align=
"center"
>
<img
src=
"../../docs/images/usage/TransformForMobilePass.png"
height=
400
width=
400
hspace=
'10'
/>
<br
/>
<strong>
图4:应用TransformForMobilePass后的结果
</strong>
</p>
> 综上,可得在量化过程中有以下几种模型结构:
> 综上,可得在量化过程中有以下几种模型结构:
1.
原始模型
1.
原始模型
2.
经QuantizationTransformPass之后得到的适用于训练的量化模型结构,在${checkpoint_path}下保存的
`eval_model`
是这种结构,在训练过程中每个epoch结束时也使用这个网络结构进行评估,虽然这个模型结构不是最终想要的模型结构,但是每个epoch的评估结果可用来挑选模型。
2.
经QuantizationTransformPass之后得到的适用于训练的量化模型结构,在${checkpoint_path}下保存的
`eval_model`
是这种结构,在训练过程中每个epoch结束时也使用这个网络结构进行评估,虽然这个模型结构不是最终想要的模型结构,但是每个epoch的评估结果可用来挑选模型。
3.
经QuantizationFreezePass之后得到的FP32模型结构,具体结构已在上面进行介绍。本文档中列出的数据集的评估结果是对FP32模型结构进行评估得到的结果。这种模型结构在训练过程中只会保存一次,也就是在量化配置文件中设置的
`end_epoch`
结束时进行保存,如果想将其他epoch的训练结果转化成FP32模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/quantization/freeze.py
</a>
进行转化,具体使用方法在
[
评估
](
#评估
)
中介绍。
3.
经QuantizationFreezePass之后得到的FP32模型结构,具体结构已在上面进行介绍。本文档中列出的数据集的评估结果是对FP32模型结构进行评估得到的结果。这种模型结构在训练过程中只会保存一次,也就是在量化配置文件中设置的
`end_epoch`
结束时进行保存,如果想将其他epoch的训练结果转化成FP32模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/quantization/freeze.py
</a>
进行转化,具体使用方法在
[
评估
](
#评估
)
中介绍。
4.
经ConvertToInt8Pass之后得到的8-bit模型结构,具体结构已在上面进行介绍。这种模型结构在训练过程中只会保存一次,也就是在量化配置文件中设置的
`end_epoch`
结束时进行保存,如果想将其他epoch的训练结果转化成8-bit模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/quantization/freeze.py
</a>
进行转化,具体使用方法在
[
评估
](
#评估
)
中介绍。
4.
经ConvertToInt8Pass之后得到的8-bit模型结构,具体结构已在上面进行介绍。这种模型结构在训练过程中只会保存一次,也就是在量化配置文件中设置的
`end_epoch`
结束时进行保存,如果想将其他epoch的训练结果转化成8-bit模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/quantization/freeze.py
</a>
进行转化,具体使用方法在
[
评估
](
#评估
)
中介绍。
5.
经TransformForMobilePass之后得到的mobile模型结构,具体结构已在上面进行介绍。这种模型结构在训练过程中只会保存一次,也就是在量化配置文件中设置的
`end_epoch`
结束时进行保存,如果想将其他epoch的训练结果转化成mobile模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/quantization/freeze.py
</a>
进行转化,具体使用方法在
[
评估
](
#评估
)
中介绍。
## 评估
## 评估
...
@@ -120,11 +113,11 @@ python eval.py \
...
@@ -120,11 +113,11 @@ python eval.py \
--model_path ${checkpoint_path}/${epoch_id}/eval_model
--model_path ${checkpoint_path}/${epoch_id}/eval_model
```
```
在评估之后,选取效果最好的epoch的模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/quantization/freeze.py
</a>
将该模型转化为以上介绍的
三种模型:FP32模型,8-bit模型,mobile
模型,需要配置的参数为:
在评估之后,选取效果最好的epoch的模型,可使用脚本
<a
href=
'./freeze.py'
>
PaddleSlim/classification/quantization/freeze.py
</a>
将该模型转化为以上介绍的
2种模型:FP32模型,8-bit
模型,需要配置的参数为:
-
model_path, 加载的模型路径,
`为${checkpoint_path}/${epoch_id}/eval_model/`
-
model_path, 加载的模型路径,
`为${checkpoint_path}/${epoch_id}/eval_model/`
-
weight_quant_type 模型参数的量化方式,和配置文件中的类型保持一致
-
weight_quant_type 模型参数的量化方式,和配置文件中的类型保持一致
-
save_path
`FP32`
,
`8-bit`
,
`mobile`
模型的保存路径,分别为
`${save_path}/float/`
,
`${save_path}/int8/`
,
`${save_path}/mobile
/`
-
save_path
`FP32`
,
`8-bit`
模型的保存路径,分别为
`${save_path}/float/`
,
`${save_path}/int8
/`
运行命令示例:
运行命令示例:
```
```
...
@@ -166,11 +159,43 @@ python infer.py \
...
@@ -166,11 +159,43 @@ python infer.py \
### PaddleLite预测
### PaddleLite预测
FP32模型可使用Paddle-Lite进行加载预测,可参见教程
[
Paddle-Lite如何加载运行量化模型
](
https://github.com/PaddlePaddle/Paddle-Lite/wiki/model_quantization
)
。
FP32模型可使用Paddle-Lite进行加载预测,可参见教程
[
Paddle-Lite如何加载运行量化模型
](
https://github.com/PaddlePaddle/Paddle-Lite/wiki/model_quantization
)
。
mobile预测模型兼容Paddle-Lite(Paddle-Mobile的升级版), 使用方法可参考
[
Paddle-Lite文档
](
https://paddlepaddle.github.io/Paddle-Lite/
)
.
## 如何进行部分量化
通过在定义op时指定
``name_scope``
为
``skip_quant``
可对这个op跳过量化。比如在
<a
href=
"../models/resnet.py"
>
PaddleSlim/classification/models/resnet.py
</a>
中,将某个conv的定义作如下改变:
原定义:
```
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name=prefix_name + conv1_name)
```
跳过量化时的定义:
```
with fluid.name_scope('skip_quant'):
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name=prefix_name + conv1_name)
```
在脚本
<a
href=
"./compress.py"
>
PaddleSlim/classification/quantization/compress.py
</a>
中,统计了
``conv``
op的数量和以
``fake_quantize``
开头的量化op的数量,在对一些
``conv``
op跳过之后,可发现以
``fake_quantize``
开头的量化op的数量变少。
## 示例结果
## 示例结果
>当前release的结果并非超参调优后的最好结果,仅做示例参考,后续我们会优化当前结果。
### MobileNetV1
### MobileNetV1
| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)| 模型下载|
| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)| 模型下载|
...
@@ -203,14 +228,23 @@ fluid.optimizer.Momentum(momentum=0.9,
...
@@ -203,14 +228,23 @@ fluid.optimizer.Momentum(momentum=0.9,
>训练超参:
>训练超参:
### ResNet50
优化器
```
fluid.optimizer.Momentum(momentum=0.9,
learning_rate=fluid.layers.piecewise_decay(
boundaries=[5000 * 12],
values=[0.0001, 0.00001]),
regularization=fluid.regularizer.L2Decay(1e-4))
```
8卡,batch size 1024,epoch 30, 挑选好的结果
### ResNet34
| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|模型下载|
| weight量化方式 | activation量化方式| top1_acc/top5_acc |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|模型下载|
|---|---|---|---|---|---|
|---|---|---|---|---|---|
|baseline|- |7
6.50%/93.00%|- |-|
[
下载模型
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
)
|
|baseline|- |7
4.57%/92.14%|- |-|-
|
|abs_max|abs_max|
76.71%/93.10% |- |-|
[
下载模型
](
https://paddle-slim-models.bj.bcebos.com/quantization%2Fresnet50_w_abs_a_abs_7670_9310.tar.gz
)
|
|abs_max|abs_max|
|- |-|-
|
|abs_max|moving_average_abs_max|
76.65%/93.12% |- |-|
[
下载模型
](
https://paddle-slim-models.bj.bcebos.com/quantization%2Fresnet50_w_abs_a_move_7665_9312.tar.gz
)
|
|abs_max|moving_average_abs_max|
|- |-|-
|
|channel_wise_abs_max|abs_max|
76.56%/93.05% |- |-|
[
下载模型
](
https://paddle-slim-models.bj.bcebos.com/quantization%2Fresnet50_w_chan_a_abs_7656_9304.tar.gz
)
|
|channel_wise_abs_max|abs_max|
|- |-| -
|
>训练超参:
>训练超参:
...
...
PaddleSlim/classification/quantization/compress.py
浏览文件 @
9a10a366
...
@@ -38,8 +38,9 @@ def compress(args):
...
@@ -38,8 +38,9 @@ def compress(args):
image_shape
=
"3,224,224"
image_shape
=
"3,224,224"
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
image
=
fluid
.
data
(
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
name
=
'image'
,
shape
=
[
None
]
+
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
# model definition
# model definition
model
=
models
.
__dict__
[
args
.
model
]()
model
=
models
.
__dict__
[
args
.
model
]()
...
@@ -95,10 +96,21 @@ def compress(args):
...
@@ -95,10 +96,21 @@ def compress(args):
eval_fetch_list
=
val_fetch_list
,
eval_fetch_list
=
val_fetch_list
,
teacher_programs
=
[],
teacher_programs
=
[],
train_optimizer
=
opt
,
train_optimizer
=
opt
,
prune_infer_model
=
[[
image
.
name
],
[
out
.
name
]],
distiller_optimizer
=
None
)
distiller_optimizer
=
None
)
com_pass
.
config
(
args
.
config_file
)
com_pass
.
config
(
args
.
config_file
)
com_pass
.
run
()
com_pass
.
run
()
conv_op_num
=
0
fake_quant_op_num
=
0
for
op
in
com_pass
.
context
.
eval_graph
.
ops
():
if
op
.
_op
.
type
==
'conv2d'
:
conv_op_num
+=
1
elif
op
.
_op
.
type
.
startswith
(
'fake_quantize'
):
fake_quant_op_num
+=
1
print
(
'conv op num {}'
.
format
(
conv_op_num
))
print
(
'fake quant op num {}'
.
format
(
fake_quant_op_num
))
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
...
...
PaddleSlim/classification/quantization/configs/mobilenet_v1.yaml
浏览文件 @
9a10a366
...
@@ -5,7 +5,6 @@ strategies:
...
@@ -5,7 +5,6 @@ strategies:
start_epoch
:
0
start_epoch
:
0
end_epoch
:
29
end_epoch
:
29
float_model_save_path
:
'
./output/mobilenet_v1/float'
float_model_save_path
:
'
./output/mobilenet_v1/float'
mobile_model_save_path
:
'
./output/mobilenet_v1/mobile'
int8_model_save_path
:
'
./output/mobilenet_v1/int8'
int8_model_save_path
:
'
./output/mobilenet_v1/int8'
weight_bits
:
8
weight_bits
:
8
activation_bits
:
8
activation_bits
:
8
...
...
PaddleSlim/classification/quantization/configs/mobilenet_v2.yaml
浏览文件 @
9a10a366
...
@@ -5,7 +5,6 @@ strategies:
...
@@ -5,7 +5,6 @@ strategies:
start_epoch
:
0
start_epoch
:
0
end_epoch
:
29
end_epoch
:
29
float_model_save_path
:
'
./output/mobilenet_v2/float'
float_model_save_path
:
'
./output/mobilenet_v2/float'
mobile_model_save_path
:
'
./output/mobilenet_v2/mobile'
int8_model_save_path
:
'
./output/mobilenet_v2/int8'
int8_model_save_path
:
'
./output/mobilenet_v2/int8'
weight_bits
:
8
weight_bits
:
8
activation_bits
:
8
activation_bits
:
8
...
...
PaddleSlim/classification/quantization/configs/resnet34.yaml
浏览文件 @
9a10a366
...
@@ -3,9 +3,8 @@ strategies:
...
@@ -3,9 +3,8 @@ strategies:
quantization_strategy
:
quantization_strategy
:
class
:
'
QuantizationStrategy'
class
:
'
QuantizationStrategy'
start_epoch
:
0
start_epoch
:
0
end_epoch
:
29
end_epoch
:
0
float_model_save_path
:
'
./output/resnet34/float'
float_model_save_path
:
'
./output/resnet34/float'
mobile_model_save_path
:
'
./output/resnet34/mobile'
int8_model_save_path
:
'
./output/resnet34/int8'
int8_model_save_path
:
'
./output/resnet34/int8'
weight_bits
:
8
weight_bits
:
8
activation_bits
:
8
activation_bits
:
8
...
@@ -14,7 +13,7 @@ strategies:
...
@@ -14,7 +13,7 @@ strategies:
save_in_nodes
:
[
'
image'
]
save_in_nodes
:
[
'
image'
]
save_out_nodes
:
[
'
fc_0.tmp_2'
]
save_out_nodes
:
[
'
fc_0.tmp_2'
]
compressor
:
compressor
:
epoch
:
30
epoch
:
1
checkpoint_path
:
'
./checkpoints/resnet34/'
checkpoint_path
:
'
./checkpoints/resnet34/'
strategies
:
strategies
:
-
quantization_strategy
-
quantization_strategy
PaddleSlim/classification/quantization/freeze.py
浏览文件 @
9a10a366
...
@@ -45,81 +45,83 @@ add_arg('save_path', str, './output', 'Path to save inference model')
...
@@ -45,81 +45,83 @@ add_arg('save_path', str, './output', 'Path to save inference model')
add_arg
(
'weight_quant_type'
,
str
,
'abs_max'
,
'quantization type for weight'
)
add_arg
(
'weight_quant_type'
,
str
,
'abs_max'
,
'quantization type for weight'
)
# yapf: enable
# yapf: enable
def
eval
(
args
):
def
eval
(
args
):
# parameters from arguments
# parameters from arguments
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
val_program
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
args
.
model_path
,
val_program
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
exe
,
args
.
model_path
,
model_filename
=
"__model__"
,
exe
,
params_filename
=
"__params__"
)
model_filename
=
"__model__.infer"
,
params_filename
=
"__params__"
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_names
,
program
=
val_program
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_names
,
program
=
val_program
)
results
=
[]
results
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
for
batch_id
,
data
in
enumerate
(
val_reader
()):
image
=
[[
d
[
0
]]
for
d
in
data
]
label
=
[[
d
[
1
]]
for
d
in
data
]
feed_data
=
feeder
.
feed
(
image
)
pred
=
exe
.
run
(
val_program
,
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
top_1_pred
=
sort_array
[:,
-
1
:][:,
::
-
1
]
top_1
=
np
.
mean
(
label
==
top_1_pred
)
top_5_pred
=
sort_array
[:,
-
5
:][:,
::
-
1
]
acc_num
=
0
for
i
in
range
(
len
(
label
)):
if
label
[
i
][
0
]
in
top_5_pred
[
i
]:
acc_num
+=
1
top_5
=
acc_num
/
len
(
label
)
results
.
append
([
top_1
,
top_5
])
# top1_acc, top5_acc
result
=
exe
.
run
(
val_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
results
.
append
(
result
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
_logger
.
info
(
"freeze the graph for inference"
)
_logger
.
info
(
"freeze the graph for inference"
)
test_graph
=
IrGraph
(
core
.
Graph
(
val_program
.
desc
),
for_test
=
True
)
test_graph
=
IrGraph
(
core
.
Graph
(
val_program
.
desc
),
for_test
=
True
)
freeze_pass
=
QuantizationFreezePass
(
freeze_pass
=
QuantizationFreezePass
(
scope
=
fluid
.
global_scope
(),
scope
=
fluid
.
global_scope
(),
place
=
place
,
place
=
place
,
weight_quantize_type
=
args
.
weight_quant_type
)
weight_quantize_type
=
args
.
weight_quant_type
)
freeze_pass
.
apply
(
test_graph
)
freeze_pass
.
apply
(
test_graph
)
server_program
=
test_graph
.
to_program
()
server_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'float'
),
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'float'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
server_program
,
main_program
=
server_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
_logger
.
info
(
"convert the weights into int8 type"
)
_logger
.
info
(
"convert the weights into int8 type"
)
convert_int8_pass
=
ConvertToInt8Pass
(
convert_int8_pass
=
ConvertToInt8Pass
(
scope
=
fluid
.
global_scope
(),
scope
=
fluid
.
global_scope
(),
place
=
place
)
place
=
place
)
convert_int8_pass
.
apply
(
test_graph
)
convert_int8_pass
.
apply
(
test_graph
)
server_int8_program
=
test_graph
.
to_program
()
server_int8_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'int8'
),
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'int8'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
server_int8_program
,
main_program
=
server_int8_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
_logger
.
info
(
"convert the freezed pass to paddle-lite execution"
)
mobile_pass
=
TransformForMobilePass
()
mobile_pass
.
apply
(
test_graph
)
mobile_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'mobile'
),
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
executor
=
exe
,
main_program
=
mobile_program
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
print_arguments
(
args
)
print_arguments
(
args
)
eval
(
args
)
eval
(
args
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
()
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录