提交 99f5b2d6 编写于 作者: Z zhengya01 提交者: Hongyu Liu

Ce language model (#2193)

* add ce for language_model

* update ce

* update ce
上级 a4a7df17
export CUDA_VISIBLE_DEVICES=0
python train.py \
--data_path data/simple-examples/data/ \
--model_type test \
--use_gpu True \
--rnn_model static \
--enable_ce | python _ce.py
python train.py \
--data_path data/simple-examples/data/ \
--model_type test \
--use_gpu True \
--rnn_model padding \
--enable_ce | python _ce.py
# this file is only used for continuous evaluation test!
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi
from kpi import DurationKpi
imikolov_20_avg_ppl_kpi_card1 = CostKpi('lstm_language_model_static_loss_card1', 0.01, 0)
imikolov_20_pass_duration_kpi_card1 = DurationKpi(
'lstm_language_model_static_duration_card1', 0.03, 0, actived=True)
imikolov_20_avg_ppl_kpi_card1_padding = CostKpi('lstm_language_model_padding_loss_card1', 0.01, 0)
imikolov_20_pass_duration_kpi_card1_padding = DurationKpi(
'lstm_language_model_padding_duration_card1', 0.03, 0, actived=True)
tracking_kpis = [
imikolov_20_avg_ppl_kpi_card1,
imikolov_20_pass_duration_kpi_card1,
imikolov_20_avg_ppl_kpi_card1_padding,
imikolov_20_pass_duration_kpi_card1_padding,
]
def parse_log(log):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost\t1.0
test_cost\t1.0
train_cost\t1.0
train_cost\t1.0
train_acc\t1.2
"
'''
for line in log.split('\n'):
fs = line.strip().split('\t')
print(fs)
if len(fs) == 3 and fs[0] == 'ptblm':
kpi_name = fs[1]
kpi_value = float(fs[2])
yield kpi_name, kpi_value
def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name] = kpi
for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name, kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()
if __name__ == '__main__':
log = sys.stdin.read()
log_to_ce(log)
......@@ -286,9 +286,10 @@ def train():
print("train ppl", ppl[0])
if epoch_id == max_epoch - 1 and args.enable_ce:
print("ptblm\tlstm_language_model_duration\t%s" %
(total_time / max_epoch))
print("ptblm\tlstm_language_model_loss\t%s" % ppl[0])
card_num = get_cards()
print("ptblm\tlstm_language_model_duration_card%d\t%s" %
(card_num, total_time / max_epoch))
print("ptblm\tlstm_language_model_loss_card%d\t%s" % (card_num, ppl[0]))
model_path = os.path.join("model_new/", str(epoch_id))
if not os.path.isdir(model_path):
......@@ -301,5 +302,13 @@ def train():
print("test ppl", test_ppl[0])
def get_cards():
num = 0
cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
if cards != '':
num = len(cards.split(","))
return num
if __name__ == '__main__':
train()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册