Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
975dc5d7
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
975dc5d7
编写于
9月 25, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
clean code in tuning script
上级
752f49d5
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
23 addition
and
25 deletion
+23
-25
deep_speech_2/tools/tune.py
deep_speech_2/tools/tune.py
+23
-25
未找到文件。
deep_speech_2/tools/tune.py
浏览文件 @
975dc5d7
...
...
@@ -17,27 +17,27 @@ from utils.utility import add_arguments, print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'num_batches'
,
int
,
-
1
,
"# of batches tuning on. "
"Default -1, on whole dev set."
)
add_arg
(
'batch_size'
,
int
,
256
,
"# of samples per batch."
)
add_arg
(
'trainer_count'
,
int
,
8
,
"# of Trainers (CPUs or GPUs)."
)
add_arg
(
'beam_size'
,
int
,
500
,
"Beam search width."
)
add_arg
(
'num_proc_bsearch'
,
int
,
12
,
"# of CPUs for beam search."
)
add_arg
(
'num_conv_layers'
,
int
,
2
,
"# of convolution layers."
)
add_arg
(
'num_rnn_layers'
,
int
,
3
,
"# of recurrent layers."
)
add_arg
(
'rnn_layer_size'
,
int
,
2048
,
"# of recurrent cells per layer."
)
add_arg
(
'num_alphas'
,
int
,
45
,
"# of alpha candidates for tuning."
)
add_arg
(
'num_betas'
,
int
,
8
,
"# of beta candidates for tuning."
)
add_arg
(
'alpha_from'
,
float
,
1.0
,
"Where alpha starts tuning from."
)
add_arg
(
'alpha_to'
,
float
,
3.2
,
"Where alpha ends tuning with."
)
add_arg
(
'beta_from'
,
float
,
0.1
,
"Where beta starts tuning from."
)
add_arg
(
'beta_to'
,
float
,
0.45
,
"Where beta ends tuning with."
)
add_arg
(
'cutoff_prob'
,
float
,
1.0
,
"Cutoff probability for pruning."
)
add_arg
(
'cutoff_top_n'
,
int
,
40
,
"Cutoff number for pruning."
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Use GRUs instead of simple RNNs."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Use GPU or not."
)
add_arg
(
'share_rnn_weights'
,
bool
,
True
,
"Share input-hidden weights across "
"bi-directional RNNs. Not for GRU."
)
add_arg
(
'num_batches'
,
int
,
-
1
,
"# of batches tuning on. "
"Default -1, on whole dev set."
)
add_arg
(
'batch_size'
,
int
,
256
,
"# of samples per batch."
)
add_arg
(
'trainer_count'
,
int
,
8
,
"# of Trainers (CPUs or GPUs)."
)
add_arg
(
'beam_size'
,
int
,
500
,
"Beam search width."
)
add_arg
(
'num_proc_bsearch'
,
int
,
12
,
"# of CPUs for beam search."
)
add_arg
(
'num_conv_layers'
,
int
,
2
,
"# of convolution layers."
)
add_arg
(
'num_rnn_layers'
,
int
,
3
,
"# of recurrent layers."
)
add_arg
(
'rnn_layer_size'
,
int
,
2048
,
"# of recurrent cells per layer."
)
add_arg
(
'num_alphas'
,
int
,
45
,
"# of alpha candidates for tuning."
)
add_arg
(
'num_betas'
,
int
,
8
,
"# of beta candidates for tuning."
)
add_arg
(
'alpha_from'
,
float
,
1.0
,
"Where alpha starts tuning from."
)
add_arg
(
'alpha_to'
,
float
,
3.2
,
"Where alpha ends tuning with."
)
add_arg
(
'beta_from'
,
float
,
0.1
,
"Where beta starts tuning from."
)
add_arg
(
'beta_to'
,
float
,
0.45
,
"Where beta ends tuning with."
)
add_arg
(
'cutoff_prob'
,
float
,
1.0
,
"Cutoff probability for pruning."
)
add_arg
(
'cutoff_top_n'
,
int
,
40
,
"Cutoff number for pruning."
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Use GRUs instead of simple RNNs."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Use GPU or not."
)
add_arg
(
'share_rnn_weights'
,
bool
,
True
,
"Share input-hidden weights across "
"bi-directional RNNs. Not for GRU."
)
add_arg
(
'tune_manifest'
,
str
,
'data/librispeech/manifest.dev-clean'
,
"Filepath of manifest to tune."
)
...
...
@@ -140,13 +140,11 @@ def tune():
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
err_sum
[
index
]
+=
error_rate_func
(
target
,
result
)
err_ave
[
index
]
=
err_sum
[
index
]
/
num_ins
# print("alpha = %f, beta = %f, WER = %f" %
# (alpha, beta, err_ave[index]))
if
index
%
2
==
0
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
# output on-line tuning result at the
the
end of current batch
# output on-line tuning result at the end of current batch
err_ave_min
=
min
(
err_ave
)
min_index
=
err_ave
.
index
(
err_ave_min
)
print
(
"
\n
Batch %d [%d/?], current opt (alpha, beta) = (%s, %s), "
...
...
@@ -156,7 +154,7 @@ def tune():
args
.
error_rate_type
,
err_ave_min
))
cur_batch
+=
1
# output WER/CER at every
point
# output WER/CER at every
(alpha, beta)
print
(
"
\n
Final %s:
\n
"
%
args
.
error_rate_type
)
for
index
in
xrange
(
len
(
params_grid
)):
print
(
"(alpha, beta) = (%s, %s), [%s] = %f"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录