提交 968b332a 编写于 作者: W wangmeng28

Add multiGPU in SE-ResNeXt

上级 11841096
......@@ -103,66 +103,87 @@ def train(learning_rate,
batch_size,
num_passes,
init_model=None,
model_save_dir='model'):
model_save_dir='model',
parallel=True):
class_dim = 1000
image_shape = [3, 224, 224]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = SE_ResNeXt(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
if parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
image_ = pd.read_input(image)
label_ = pd.read_input(label)
out = SE_ResNeXt(input=image_, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label_)
avg_cost = fluid.layers.mean(x=cost)
accuracy = fluid.layers.accuracy(input=out, label=label_)
pd.write_output(avg_cost)
pd.write_output(accuracy)
avg_cost, accuracy = pd()
avg_cost = fluid.layers.mean(x=avg_cost)
accuracy = fluid.layers.mean(x=accuracy)
else:
out = SE_ResNeXt(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
accuracy = fluid.layers.accuracy(input=out, label=label)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=out, label=label)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=out, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
inference_program = fluid.io.get_inference_program([avg_cost, accuracy])
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if init_model is not None:
fluid.io.load_persistables_if_exist(exe, init_model)
fluid.io.load_persistables(exe, init_model)
train_reader = paddle.batch(reader.train(), batch_size=batch_size)
test_reader = paddle.batch(reader.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
for pass_id in range(num_passes):
accuracy.reset(exe)
for batch_id, data in enumerate(train_reader()):
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
print("Pass {0}, batch {1}, loss {2}, acc {3}".format(
pass_id, batch_id, loss[0], acc[0]))
pass_acc = accuracy.eval(exe)
test_accuracy.reset(exe)
loss = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
print("Pass {0}, batch {1}, loss {2}".format(pass_id, batch_id,
float(loss[0])))
total_loss = 0.0
total_acc = 0.0
total_batch = 0
for data in test_reader():
loss, acc = exe.run(inference_program,
feed=feeder.feed(data),
fetch_list=[avg_cost] + test_accuracy.metrics)
test_pass_acc = test_accuracy.eval(exe)
print("End pass {0}, train_acc {1}, test_acc {2}".format(
pass_id, pass_acc, test_pass_acc))
fetch_list=[avg_cost, accuracy])
total_loss += float(loss)
total_acc += float(acc)
total_batch += 1
print("End pass {0}, test_loss {1}, test_acc {2}".format(
pass_id, total_loss / total_batch, total_acc / total_batch))
model_path = os.path.join(model_save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(exe, model_path)
fluid.io.save_inference_model(model_path, ['image'], [out], exe)
if __name__ == '__main__':
train(learning_rate=0.1, batch_size=8, num_passes=100, init_model=None)
train(
learning_rate=0.1,
batch_size=8,
num_passes=100,
init_model=None,
parallel=False)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册