Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
95c030ab
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95c030ab
编写于
3月 13, 2018
作者:
R
root
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
for code review
上级
f522a323
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
199 addition
and
124 deletion
+199
-124
fluid/sequence_tagging_for_ner/infer.py
fluid/sequence_tagging_for_ner/infer.py
+62
-0
fluid/sequence_tagging_for_ner/network_conf.py
fluid/sequence_tagging_for_ner/network_conf.py
+97
-85
fluid/sequence_tagging_for_ner/reader.py
fluid/sequence_tagging_for_ner/reader.py
+1
-2
fluid/sequence_tagging_for_ner/train.py
fluid/sequence_tagging_for_ner/train.py
+38
-33
fluid/sequence_tagging_for_ner/utils.py
fluid/sequence_tagging_for_ner/utils.py
+1
-4
未找到文件。
fluid/sequence_tagging_for_ner/infer.py
0 → 100644
浏览文件 @
95c030ab
import
gzip
import
numpy
as
np
import
reader
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
from
network_conf
import
ner_net
from
utils
import
load_dict
,
load_reverse_dict
def
infer
(
model_path
,
batch_size
,
test_data_file
,
vocab_file
,
target_file
):
word
=
fluid
.
layers
.
data
(
name
=
'word'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mark
=
fluid
.
layers
.
data
(
name
=
'mark'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
target
=
fluid
.
layers
.
data
(
name
=
'target'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
word_dict
=
load_dict
(
vocab_file
)
word_reverse_dict
=
load_reverse_dict
(
vocab_file
)
label_dict
=
load_dict
(
target_file
)
label_reverse_dict
=
load_reverse_dict
(
target_file
)
test_data
=
paddle
.
batch
(
reader
.
data_reader
(
test_data_file
,
word_dict
,
label_dict
),
batch_size
=
batch_size
)
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
word
,
mark
,
target
],
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
for
data
in
test_data
():
crf_decode
=
exe
.
run
(
inference_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
lod_info
=
(
crf_decode
[
0
].
lod
())[
0
]
np_data
=
np
.
array
(
crf_decode
[
0
])
assert
len
(
data
)
==
len
(
lod_info
)
-
1
for
sen_index
in
xrange
(
len
(
data
)):
assert
len
(
data
[
sen_index
][
0
])
==
lod_info
[
sen_index
+
1
]
-
lod_info
[
sen_index
]
word_index
=
0
for
tag_index
in
xrange
(
lod_info
[
sen_index
],
lod_info
[
sen_index
+
1
]):
word
=
word_reverse_dict
[
data
[
sen_index
][
0
][
word_index
]]
gold_tag
=
label_reverse_dict
[
data
[
sen_index
][
2
][
word_index
]]
tag
=
label_reverse_dict
[
np_data
[
tag_index
][
0
]]
print
word
+
"
\t
"
+
gold_tag
+
"
\t
"
+
tag
word_index
+=
1
print
""
if
__name__
==
"__main__"
:
infer
(
model_path
=
"models/params_pass_0"
,
batch_size
=
6
,
test_data_file
=
"data/test"
,
vocab_file
=
"data/vocab.txt"
,
target_file
=
"data/target.txt"
)
fluid/sequence_tagging_for_ner/network_conf.py
浏览文件 @
95c030ab
import
math
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
NormalInitializer
from
utils
import
logger
,
load_dict
,
get_embedding
import
math
def
ner_net
(
word_dict_len
,
label_dict_len
,
stack_num
=
2
,
is_train
=
True
):
def
ner_net
(
word_dict_len
,
label_dict_len
,
parallel
,
stack_num
=
2
):
mark_dict_len
=
2
word_dim
=
50
mark_dim
=
5
...
...
@@ -12,92 +14,83 @@ def ner_net(word_dict_len, label_dict_len, stack_num=2, is_train=True):
IS_SPARSE
=
True
embedding_name
=
'emb'
word
=
fluid
.
layers
.
data
(
name
=
'word'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
word_embedding
=
fluid
.
layers
.
embedding
(
input
=
word
,
size
=
[
word_dict_len
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
mark
=
fluid
.
layers
.
data
(
name
=
'mark'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
def
_net_conf
(
word
,
mark
,
target
):
word_embedding
=
fluid
.
layers
.
embedding
(
input
=
word
,
size
=
[
word_dict_len
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
mark_embedding
=
fluid
.
layers
.
embedding
(
input
=
mark
,
size
=
[
mark_dict_len
,
mark_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
)
mark_embedding
=
fluid
.
layers
.
embedding
(
input
=
mark
,
size
=
[
mark_dict_len
,
mark_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
)
word_caps_vector
=
fluid
.
layers
.
concat
(
input
=
[
word_embedding
,
mark_embedding
],
axis
=
1
)
mix_hidden_lr
=
1
word_caps_vector
=
fluid
.
layers
.
concat
(
input
=
[
word_embedding
,
mark_embedding
],
axis
=
1
)
mix_hidden_lr
=
1
rnn_para_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
0.0
,
seed
=
0
),
learning_rate
=
mix_hidden_lr
)
hidden_para_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
),
seed
=
0
),
learning_rate
=
mix_hidden_lr
)
rnn_para_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
0.
0
),
learning_rate
=
mix_hidden_lr
)
hidden_para_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
)
),
learning_rate
=
mix_hidden_lr
)
hidden
=
fluid
.
layers
.
fc
(
input
=
word_caps_vector
,
name
=
"__hidden00__"
,
size
=
hidden_dim
,
act
=
"tanh"
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
),
seed
=
0
)),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
),
seed
=
0
)))
fea
=
[]
for
direction
in
[
"fwd"
,
"bwd"
]:
for
i
in
range
(
stack_num
):
if
i
!=
0
:
hidden
=
fluid
.
layers
.
fc
(
name
=
"__hidden%02d_%s__"
%
(
i
,
direction
),
hidden
=
fluid
.
layers
.
fc
(
input
=
word_caps_vector
,
name
=
"__hidden00__"
,
size
=
hidden_dim
,
act
=
"tanh"
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
))),
param_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
))))
fea
=
[]
for
direction
in
[
"fwd"
,
"bwd"
]:
for
i
in
range
(
stack_num
):
if
i
!=
0
:
hidden
=
fluid
.
layers
.
fc
(
name
=
"__hidden%02d_%s__"
%
(
i
,
direction
),
size
=
hidden_dim
,
act
=
"stanh"
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
1.0
)),
input
=
[
hidden
,
rnn
[
0
],
rnn
[
1
]],
param_attr
=
[
hidden_para_attr
,
rnn_para_attr
,
rnn_para_attr
])
rnn
=
fluid
.
layers
.
dynamic_lstm
(
name
=
"__rnn%02d_%s__"
%
(
i
,
direction
),
input
=
hidden
,
size
=
hidden_dim
,
act
=
"stanh"
,
candidate_activation
=
'relu'
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'sigmoid'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
1.0
,
seed
=
0
)),
input
=
[
hidden
,
rnn
[
0
],
rnn
[
1
]],
param_attr
=
[
hidden_para_attr
,
rnn_para_attr
,
rnn_para_attr
])
rnn
=
fluid
.
layers
.
dynamic_lstm
(
name
=
"__rnn%02d_%s__"
%
(
i
,
direction
),
input
=
hidden
,
size
=
hidden_dim
,
candidate_activation
=
'relu'
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'sigmoid'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
1.0
,
seed
=
0
)),
is_reverse
=
(
i
%
2
)
if
direction
==
"fwd"
else
not
i
%
2
,
param_attr
=
rnn_para_attr
)
fea
+=
[
hidden
,
rnn
[
0
],
rnn
[
1
]]
loc
=
0.0
,
scale
=
1.0
)),
is_reverse
=
(
i
%
2
)
if
direction
==
"fwd"
else
not
i
%
2
,
param_attr
=
rnn_para_attr
)
fea
+=
[
hidden
,
rnn
[
0
],
rnn
[
1
]]
rnn_fea
=
fluid
.
layers
.
fc
(
size
=
hidden_dim
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
),
seed
=
0
)),
act
=
"stanh"
,
input
=
fea
,
param_attr
=
[
hidden_para_attr
,
rnn_para_attr
,
rnn_para_attr
]
*
2
)
rnn_fea
=
fluid
.
layers
.
fc
(
size
=
hidden_dim
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
)
)),
act
=
"stanh"
,
input
=
fea
,
param_attr
=
[
hidden_para_attr
,
rnn_para_attr
,
rnn_para_attr
]
*
2
)
emission
=
fluid
.
layers
.
fc
(
size
=
label_dict_len
,
input
=
rnn_fea
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
),
seed
=
0
)))
if
is_train
:
target
=
fluid
.
layers
.
data
(
name
=
"target"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
emission
=
fluid
.
layers
.
fc
(
size
=
label_dict_len
,
input
=
rnn_fea
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
))))
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
emission
,
...
...
@@ -105,11 +98,30 @@ def ner_net(word_dict_len, label_dict_len, stack_num=2, is_train=True):
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
)
,
seed
=
0
),
loc
=
0.0
,
scale
=
(
1.
/
math
.
sqrt
(
hidden_dim
)
/
3
)),
learning_rate
=
mix_hidden_lr
))
return
crf_cost
,
emission
,
word
,
mark
,
target
avg_cost
=
fluid
.
layers
.
mean
(
x
=
crf_cost
)
return
avg_cost
,
emission
word
=
fluid
.
layers
.
data
(
name
=
'word'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mark
=
fluid
.
layers
.
data
(
name
=
'mark'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
target
=
fluid
.
layers
.
data
(
name
=
"target"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
if
parallel
:
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
word_
=
pd
.
read_input
(
word
)
mark_
=
pd
.
read_input
(
mark
)
target_
=
pd
.
read_input
(
target
)
avg_cost
,
emission_base
=
_net_conf
(
word_
,
mark_
,
target_
)
pd
.
write_output
(
avg_cost
)
pd
.
write_output
(
emission_base
)
avg_cost_list
,
emission
=
pd
()
avg_cost
=
fluid
.
layers
.
mean
(
x
=
avg_cost_list
)
emission
.
stop_gradient
=
True
else
:
predict
=
fluid
.
layers
.
crf_decoding
(
input
=
emission
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
))
return
predic
t
avg_cost
,
emission
=
_net_conf
(
word
,
mark
,
target
)
return
avg_cost
,
emission
,
word
,
mark
,
targe
t
fluid/sequence_tagging_for_ner/reader.py
浏览文件 @
95c030ab
"""
Conll03 dataset.
"""
from
utils
import
*
import
re
__all__
=
[
"data_reader"
]
...
...
fluid/sequence_tagging_for_ner/train.py
浏览文件 @
95c030ab
import
os
import
math
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
import
reader
from
network_conf
import
ner_net
from
utils
import
logger
,
load_dict
,
get_embedding
import
reader
import
os
import
math
import
numpy
as
np
def
to_lodtensor
(
data
,
place
):
...
...
@@ -36,17 +38,12 @@ def test(exe, chunk_evaluator, inference_program, test_data, place):
return
chunk_evaluator
.
eval
(
exe
)
def
main
(
train_data_file
,
test_data_file
,
vocab_file
,
target_file
,
emb_file
,
model_save_dir
,
num_passes
=
100
,
batch_size
=
64
):
def
main
(
train_data_file
,
test_data_file
,
vocab_file
,
target_file
,
emb_file
,
model_save_dir
,
num_passes
,
use_gpu
,
parallel
):
if
not
os
.
path
.
exists
(
model_save_dir
):
os
.
mkdir
(
model_save_dir
)
BATCH_SIZE
=
200
word_dict
=
load_dict
(
vocab_file
)
label_dict
=
load_dict
(
target_file
)
...
...
@@ -55,11 +52,10 @@ def main(train_data_file,
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
crf_cost
,
feature_out
,
word
,
mark
,
target
=
ner_net
(
word_dict_len
,
label_dict_len
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
crf_cost
)
avg_cost
,
feature_out
,
word
,
mark
,
target
=
ner_net
(
word_dict_len
,
label_dict_len
,
parallel
)
sgd_optimizer
=
fluid
.
optimizer
.
Momentum
(
momentum
=
0.0
,
learning_rate
=
1e-3
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
sgd_optimizer
.
minimize
(
avg_cost
)
crf_decode
=
fluid
.
layers
.
crf_decoding
(
...
...
@@ -79,15 +75,16 @@ def main(train_data_file,
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
data_reader
(
train_data_file
,
word_dict
,
label_dict
),
buf_size
=
1
000
),
batch_size
=
batch_size
)
buf_size
=
20
000
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
data_reader
(
test_data_file
,
word_dict
,
label_dict
),
buf_size
=
1
000
),
batch_size
=
batch_size
)
buf_size
=
20
000
),
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_gpu
else
fluid
.
CPUPlace
()
#place = fluid.CPUPlace()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
word
,
mark
,
target
],
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -101,27 +98,33 @@ def main(train_data_file,
for
pass_id
in
xrange
(
num_passes
):
chunk_evaluator
.
reset
(
exe
)
for
data
in
train_reader
():
cost
,
precision
,
recall
,
f1_score
=
exe
.
run
(
print
len
(
data
)
cost
,
batch_precision
,
batch_recall
,
batch_f1_score
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
chunk_evaluator
.
metrics
)
if
batch_id
%
5
==
0
:
print
(
"Pass "
+
str
(
pass_id
)
+
", Batch "
+
str
(
batch_id
)
+
", Cost "
+
str
(
cost
)
+
", Precision "
+
str
(
precision
)
+
", Recall "
+
str
(
recall
)
+
", F1_score"
+
str
(
f1_score
))
print
(
"Pass "
+
str
(
pass_id
)
+
", Batch "
+
str
(
batch_id
)
+
", Cost "
+
str
(
cost
[
0
])
+
", Precision "
+
str
(
batch_precision
[
0
])
+
", Recall "
+
str
(
batch_recall
[
0
])
+
", F1_score"
+
str
(
batch_f1_score
[
0
]))
batch_id
=
batch_id
+
1
pass_precision
,
pass_recall
,
pass_f1_score
=
test
(
exe
,
chunk_evaluator
,
inference_program
,
train_reader
,
place
)
print
(
"[TrainSet] pass_id:"
+
str
(
pass_id
)
+
" pass_precision:"
+
str
(
pass_precision
)
+
" pass_recall:"
+
str
(
pass_recall
)
+
pass_precision
,
pass_recall
,
pass_f1_score
=
chunk_evaluator
.
eval
(
exe
)
print
(
"[TrainSet] pass_id:"
+
str
(
pass_id
)
+
" pass_precision:"
+
str
(
pass_precision
)
+
" pass_recall:"
+
str
(
pass_recall
)
+
" pass_f1_score:"
+
str
(
pass_f1_score
))
pass_precision
,
pass_recall
,
pass_f1_score
=
test
(
exe
,
chunk_evaluator
,
inference_program
,
test_reader
,
place
)
print
(
"[TestSet] pass_id:"
+
str
(
pass_id
)
+
" pass_precision:"
+
str
(
pass_precision
)
+
" pass_recall:"
+
str
(
pass_recall
)
+
print
(
"[TestSet] pass_id:"
+
str
(
pass_id
)
+
" pass_precision:"
+
str
(
pass_precision
)
+
" pass_recall:"
+
str
(
pass_recall
)
+
" pass_f1_score:"
+
str
(
pass_f1_score
))
save_dirname
=
os
.
path
.
join
(
model_save_dir
,
"params_pass_%d"
%
pass_id
)
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word'
,
'mark'
,
'target'
],
[
crf_decode
],
exe
)
if
__name__
==
"__main__"
:
main
(
...
...
@@ -130,5 +133,7 @@ if __name__ == "__main__":
vocab_file
=
"data/vocab.txt"
,
target_file
=
"data/target.txt"
,
emb_file
=
"data/wordVectors.txt"
,
model_save_dir
=
"models/"
,
num_passes
=
1000
)
model_save_dir
=
"models"
,
num_passes
=
1000
,
use_gpu
=
False
,
parallel
=
True
)
fluid/sequence_tagging_for_ner/utils.py
浏览文件 @
95c030ab
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
logging
import
os
import
re
import
argparse
import
numpy
as
np
from
collections
import
defaultdict
logger
=
logging
.
getLogger
(
"paddle"
)
logger
.
setLevel
(
logging
.
INFO
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录