Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
9555e439
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9555e439
编写于
7月 01, 2019
作者:
Q
qingqing01
提交者:
GitHub
7月 01, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update README.md (#2628)
* Update README.md and GETTING_STARTED.md for PaddleDetection.
上级
058a9516
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
20 addition
and
11 deletion
+20
-11
PaddleCV/PaddleDetection/README.md
PaddleCV/PaddleDetection/README.md
+12
-8
PaddleCV/PaddleDetection/docs/GETTING_STARTED.md
PaddleCV/PaddleDetection/docs/GETTING_STARTED.md
+8
-3
未找到文件。
PaddleCV/PaddleDetection/README.md
浏览文件 @
9555e439
...
...
@@ -13,23 +13,26 @@ flexible, catering to research needs.
## Introduction
Design Principl
es:
Featur
es:
-
Production Ready:
Key operations are implemented in C++ and CUDA, together with PaddlePaddle's
Key operations are implemented in C++ and CUDA, together with PaddlePaddle's
highly efficient inference engine, enables easy deployment in server environments.
-
Highly Flexible:
Components are designed to be modular. Model architectures, as well as data
Components are designed to be modular. Model architectures, as well as data
preprocess pipelines, can be easily customized with simple configuration
changes.
-
Performance Optimized:
With the help of the underlying PaddlePaddle framework, faster training and
With the help of the underlying PaddlePaddle framework, faster training and
reduced GPU memory footprint is achieved. Notably, Yolo V3 training is
much faster compared to other frameworks. Another example is Mask-RCNN
(ResNet50), we managed to fit up to
5 images per GPU (
V100 16GB) during
training.
(ResNet50), we managed to fit up to
4 images per GPU (Tesla
V100 16GB) during
multi-GPU
training.
Supported Architectures:
...
...
@@ -44,7 +47,7 @@ Supported Architectures:
| Yolov3 | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
<a
name=
"vd"
>
[1]
</a>
ResNet-vd
models offer much improved accuracy with negligible performance cost.
<a
name=
"vd"
>
[
1]</a>
[ResNet-vd
](
https://arxiv.org/pdf/1812.01187
)
models offer much improved accuracy with negligible performance cost.
Advanced Features:
...
...
@@ -67,7 +70,7 @@ Please follow the [installation guide](docs/INSTALL.md).
## Get Started
For inference, simply run the following command and the visualized result will
be saved in
`output
/
`
.
be saved in
`output`
.
```
bash
export
PYTHONPATH
=
`
pwd
`
:
$PYTHONPATH
...
...
@@ -102,6 +105,7 @@ Some of the planned features include:
## Updates
#### Initial release (7/3/2019)
-
Initial release of PaddleDetection and detection model zoo
-
Models included: Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask
R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, Yolo v3, and SSD.
...
...
PaddleCV/PaddleDetection/docs/GETTING_STARTED.md
浏览文件 @
9555e439
...
...
@@ -75,8 +75,13 @@ path, simply add a `--save_file=` flag.
## FAQ
**Q:**
Why do I get
`NaN`
loss values during single GPU training?
</br>
**A:**
The default learning rate is tuned to multi-GPU training (8x GPUs), it must
be adapted for single GPU training accordingly (e.g., divide by 8).
Q: Why do I get
`NaN`
loss values during single GPU training?
A: The default learning rate is tuned to multi-GPU training (8x GPUs), it must
be adapted for single GPU training accordingly (e.g., divide by 8).
**Q:**
How to reduce GPU memory usage?
</br>
**A:**
Setting environment variable FLAGS_conv_workspace_size_limit to a smaller
number can reduce GPU memory footprint without affecting training speed.
Take Mask-RCNN (R50) as example, by setting
`export FLAGS_conv_workspace_size_limit=512`
,
batch size could reach 4 per GPU (Tesla V100 16GB).
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录