Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
93c4daa4
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
93c4daa4
编写于
9月 23, 2020
作者:
Y
Yiqun Liu
提交者:
GitHub
9月 23, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Calculate the average time for gan models when benchmarking. (#4873)
上级
b9b8c888
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
107 addition
and
43 deletion
+107
-43
PaddleCV/gan/trainer/CycleGAN.py
PaddleCV/gan/trainer/CycleGAN.py
+22
-17
PaddleCV/gan/trainer/Pix2pix.py
PaddleCV/gan/trainer/Pix2pix.py
+14
-8
PaddleCV/gan/trainer/STGAN.py
PaddleCV/gan/trainer/STGAN.py
+20
-10
PaddleCV/gan/trainer/StarGAN.py
PaddleCV/gan/trainer/StarGAN.py
+18
-8
PaddleCV/gan/util/timer.py
PaddleCV/gan/util/timer.py
+33
-0
未找到文件。
PaddleCV/gan/trainer/CycleGAN.py
浏览文件 @
93c4daa4
...
@@ -17,6 +17,7 @@ from __future__ import division
...
@@ -17,6 +17,7 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
from
network.CycleGAN_network
import
CycleGAN_model
from
network.CycleGAN_network
import
CycleGAN_model
from
util
import
utility
from
util
import
utility
from
util
import
timer
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
profiler
from
paddle.fluid
import
profiler
import
paddle
import
paddle
...
@@ -291,15 +292,17 @@ class CycleGAN(object):
...
@@ -291,15 +292,17 @@ class CycleGAN(object):
loss_name
=
d_B_trainer
.
d_loss_B
.
name
,
loss_name
=
d_B_trainer
.
d_loss_B
.
name
,
build_strategy
=
build_strategy
)
build_strategy
=
build_strategy
)
t_time
=
0
total_train_batch
=
0
# NOTE :used for benchmark
total_train_batch
=
0
# NOTE :used for benchmark
reader_cost_averager
=
timer
.
TimeAverager
()
batch_cost_averager
=
timer
.
TimeAverager
()
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
batch_id
=
0
batch_start
=
time
.
time
()
for
data_A
,
data_B
in
zip
(
A_loader
(),
B_loader
()):
for
data_A
,
data_B
in
zip
(
A_loader
(),
B_loader
()):
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
return
return
s_time
=
time
.
time
()
reader_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
tensor_A
,
tensor_B
=
data_A
[
0
][
'input_A'
],
data_B
[
0
][
'input_B'
]
tensor_A
,
tensor_B
=
data_A
[
0
][
'input_A'
],
data_B
[
0
][
'input_B'
]
## optimize the g_A network
## optimize the g_A network
g_A_loss
,
g_A_cyc_loss
,
g_A_idt_loss
,
g_B_loss
,
g_B_cyc_loss
,
\
g_A_loss
,
g_A_cyc_loss
,
g_A_idt_loss
,
g_B_loss
,
g_B_cyc_loss
,
\
...
@@ -335,26 +338,31 @@ class CycleGAN(object):
...
@@ -335,26 +338,31 @@ class CycleGAN(object):
feed
=
{
"input_A"
:
tensor_A
,
feed
=
{
"input_A"
:
tensor_A
,
"fake_pool_A"
:
fake_pool_A
})[
0
]
"fake_pool_A"
:
fake_pool_A
})[
0
]
batch_time
=
time
.
time
()
-
s_time
batch_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
t_time
+=
batch_time
if
batch_id
%
self
.
cfg
.
print_freq
==
0
:
if
batch_id
%
self
.
cfg
.
print_freq
==
0
:
print
(
"epoch{}: batch{}:
\n\
print
(
"epoch{}: batch{}:
\n\
d_A_loss: {}; g_A_loss: {}; g_A_cyc_loss: {}; g_A_idt_loss: {};
\n\
d_A_loss: {}; g_A_loss: {}; g_A_cyc_loss: {}; g_A_idt_loss: {};
\n\
d_B_loss: {}; g_B_loss: {}; g_B_cyc_loss: {}; g_B_idt_loss: {};
\n\
d_B_loss: {}; g_B_loss: {}; g_B_cyc_loss: {}; g_B_idt_loss: {};
\n\
Batch_time_cost: {}"
.
format
(
reader_cost: {}, Batch_time_cost: {}"
epoch_id
,
batch_id
,
d_A_loss
[
0
],
g_A_loss
[
0
],
.
format
(
epoch_id
,
batch_id
,
d_A_loss
[
0
],
g_A_loss
[
g_A_cyc_loss
[
0
],
g_A_idt_loss
[
0
],
d_B_loss
[
0
],
g_B_loss
[
0
],
g_A_cyc_loss
[
0
],
g_A_idt_loss
[
0
],
d_B_loss
[
0
],
0
],
g_B_cyc_loss
[
0
],
g_B_idt_loss
[
0
],
batch_time
))
g_B_loss
[
0
],
g_B_cyc_loss
[
0
],
g_B_idt_loss
[
0
],
reader_cost_averager
.
get_average
(),
batch_cost_averager
.
get_average
()))
reader_cost_averager
.
reset
()
batch_cost_averager
.
reset
()
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
batch_id
+=
1
batch_id
+=
1
#NOTE: used for benchmark
total_train_batch
+=
1
# used for benchmark
total_train_batch
+=
1
# used for benchmark
batch_start
=
time
.
time
()
# profiler tools
# profiler tools
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
profiler
.
reset_profiler
()
profiler
.
reset_profiler
()
elif
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
+
5
:
elif
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
+
5
:
return
return
# used for continuous evaluation
# used for continuous evaluation
if
self
.
cfg
.
enable_ce
and
batch_id
==
10
:
if
self
.
cfg
.
enable_ce
and
batch_id
==
10
:
break
break
...
@@ -398,12 +406,9 @@ class CycleGAN(object):
...
@@ -398,12 +406,9 @@ class CycleGAN(object):
B_id2name
=
self
.
B_id2name
)
B_id2name
=
self
.
B_id2name
)
if
self
.
cfg
.
save_checkpoints
:
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
gen_trainer
,
"net_G"
)
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
d_A_trainer
,
"net_DA"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
d_A_trainer
,
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
d_B_trainer
,
"net_DB"
)
"net_DA"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
d_B_trainer
,
"net_DB"
)
# used for continuous evaluation
# used for continuous evaluation
if
self
.
cfg
.
enable_ce
:
if
self
.
cfg
.
enable_ce
:
...
...
PaddleCV/gan/trainer/Pix2pix.py
浏览文件 @
93c4daa4
...
@@ -17,6 +17,7 @@ from __future__ import division
...
@@ -17,6 +17,7 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
from
network.Pix2pix_network
import
Pix2pix_model
from
network.Pix2pix_network
import
Pix2pix_model
from
util
import
utility
from
util
import
utility
from
util
import
timer
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
profiler
from
paddle.fluid
import
profiler
import
sys
import
sys
...
@@ -257,16 +258,16 @@ class Pix2pix(object):
...
@@ -257,16 +258,16 @@ class Pix2pix(object):
loss_name
=
dis_trainer
.
d_loss
.
name
,
loss_name
=
dis_trainer
.
d_loss
.
name
,
build_strategy
=
build_strategy
)
build_strategy
=
build_strategy
)
t_time
=
0
total_train_batch
=
0
# used for benchmark
total_train_batch
=
0
# used for benchmark
reader_cost_averager
=
timer
.
TimeAverager
()
batch_cost_averager
=
timer
.
TimeAverager
()
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
batch_id
=
0
batch_start
=
time
.
time
()
for
tensor
in
loader
():
for
tensor
in
loader
():
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
return
return
s_time
=
time
.
time
(
)
reader_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
# optimize the generator network
# optimize the generator network
g_loss_gan
,
g_loss_l1
,
fake_B_tmp
=
exe
.
run
(
g_loss_gan
,
g_loss_l1
,
fake_B_tmp
=
exe
.
run
(
...
@@ -291,19 +292,24 @@ class Pix2pix(object):
...
@@ -291,19 +292,24 @@ class Pix2pix(object):
],
],
feed
=
tensor
)
feed
=
tensor
)
batch_time
=
time
.
time
()
-
s_time
batch_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
t_time
+=
batch_time
if
batch_id
%
self
.
cfg
.
print_freq
==
0
:
if
batch_id
%
self
.
cfg
.
print_freq
==
0
:
print
(
"epoch{}: batch{}:
\n\
print
(
"epoch{}: batch{}:
\n\
g_loss_gan: {}; g_loss_l1: {};
\n\
g_loss_gan: {}; g_loss_l1: {};
\n\
d_loss_real: {}; d_loss_fake: {};
\n\
d_loss_real: {}; d_loss_fake: {};
\n\
Batch_time_cost: {}"
reader_cost: {},
Batch_time_cost: {}"
.
format
(
epoch_id
,
batch_id
,
g_loss_gan
[
0
],
g_loss_l1
[
.
format
(
epoch_id
,
batch_id
,
g_loss_gan
[
0
],
g_loss_l1
[
0
],
d_loss_real
[
0
],
d_loss_fake
[
0
],
batch_time
))
0
],
d_loss_real
[
0
],
d_loss_fake
[
0
],
reader_cost_averager
.
get_average
(),
batch_cost_averager
.
get_average
()))
reader_cost_averager
.
reset
()
batch_cost_averager
.
reset
()
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
batch_id
+=
1
batch_id
+=
1
total_train_batch
+=
1
# used for benchmark
total_train_batch
+=
1
# used for benchmark
batch_start
=
time
.
time
()
# profiler tools
# profiler tools
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
profiler
.
reset_profiler
()
profiler
.
reset_profiler
()
...
...
PaddleCV/gan/trainer/STGAN.py
浏览文件 @
93c4daa4
...
@@ -11,11 +11,13 @@
...
@@ -11,11 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
from
network.STGAN_network
import
STGAN_model
from
network.STGAN_network
import
STGAN_model
from
util
import
utility
from
util
import
utility
from
util
import
timer
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
profiler
from
paddle.fluid
import
profiler
import
sys
import
sys
...
@@ -344,16 +346,17 @@ class STGAN(object):
...
@@ -344,16 +346,17 @@ class STGAN(object):
gen_trainer_program
.
random_seed
=
90
gen_trainer_program
.
random_seed
=
90
dis_trainer_program
.
random_seed
=
90
dis_trainer_program
.
random_seed
=
90
t_time
=
0
total_train_batch
=
0
# used for benchmark
total_train_batch
=
0
# used for benchmark
reader_cost_averager
=
timer
.
TimeAverager
()
batch_cost_averager
=
timer
.
TimeAverager
()
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
batch_id
=
0
batch_start
=
time
.
time
()
for
data
in
loader
():
for
data
in
loader
():
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
return
return
s_time
=
time
.
time
()
reader_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
# optimize the discriminator network
# optimize the discriminator network
fetches
=
[
fetches
=
[
dis_trainer
.
d_loss
.
name
,
dis_trainer
.
d_loss
.
name
,
...
@@ -376,20 +379,27 @@ class STGAN(object):
...
@@ -376,20 +379,27 @@ class STGAN(object):
g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
.
format
(
epoch_id
,
batch_id
,
g_loss_fake
[
0
],
.
format
(
epoch_id
,
batch_id
,
g_loss_fake
[
0
],
g_loss_rec
[
0
],
g_loss_cls
[
0
]))
g_loss_rec
[
0
],
g_loss_cls
[
0
]))
batch_time
=
time
.
time
()
-
s_time
t_time
+=
batch_time
batch_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
if
(
batch_id
+
1
)
%
self
.
cfg
.
print_freq
==
0
:
if
(
batch_id
+
1
)
%
self
.
cfg
.
print_freq
==
0
:
print
(
"epoch{}: batch{}:
\n\
print
(
"epoch{}: batch{}:
\n\
d_loss: {}; d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {}
\n\
d_loss: {}; d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {}
\n\
Batch_time_cost: {}"
.
format
(
epoch_id
,
batch_id
,
d_loss
[
reader_cost: {}, Batch_time_cost: {}"
0
],
d_loss_real
[
0
],
d_loss_fake
[
0
],
d_loss_cls
[
0
],
.
format
(
epoch_id
,
batch_id
,
d_loss
[
0
],
d_loss_real
[
0
],
d_loss_gp
[
0
],
batch_time
))
d_loss_fake
[
0
],
d_loss_cls
[
0
],
d_loss_gp
[
0
],
reader_cost_averager
.
get_average
(),
batch_cost_averager
.
get_average
()))
reader_cost_averager
.
reset
()
batch_cost_averager
.
reset
()
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
batch_id
+=
1
batch_id
+=
1
total_train_batch
+=
1
# used for benchmark
batch_start
=
time
.
time
()
if
self
.
cfg
.
enable_ce
and
batch_id
==
100
:
if
self
.
cfg
.
enable_ce
and
batch_id
==
100
:
break
break
total_train_batch
+=
1
# used for benchmark
# profiler tools
# profiler tools
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
profiler
.
reset_profiler
()
profiler
.
reset_profiler
()
...
...
PaddleCV/gan/trainer/StarGAN.py
浏览文件 @
93c4daa4
...
@@ -11,11 +11,13 @@
...
@@ -11,11 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
print_function
from
network.StarGAN_network
import
StarGAN_model
from
network.StarGAN_network
import
StarGAN_model
from
util
import
utility
from
util
import
utility
from
util
import
timer
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
profiler
from
paddle.fluid
import
profiler
import
sys
import
sys
...
@@ -313,14 +315,17 @@ class StarGAN(object):
...
@@ -313,14 +315,17 @@ class StarGAN(object):
gen_trainer_program
.
random_seed
=
90
gen_trainer_program
.
random_seed
=
90
dis_trainer_program
.
random_seed
=
90
dis_trainer_program
.
random_seed
=
90
t_time
=
0
total_train_batch
=
0
# used for benchmark
total_train_batch
=
0
# used for benchmark
reader_cost_averager
=
timer
.
TimeAverager
()
batch_cost_averager
=
timer
.
TimeAverager
()
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
batch_id
=
0
batch_start
=
time
.
time
()
for
data
in
loader
():
for
data
in
loader
():
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
if
self
.
cfg
.
max_iter
and
total_train_batch
==
self
.
cfg
.
max_iter
:
# used for benchmark
return
return
s_time
=
time
.
time
()
reader_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
d_loss_real
,
d_loss_fake
,
d_loss
,
d_loss_cls
,
d_loss_gp
=
exe
.
run
(
d_loss_real
,
d_loss_fake
,
d_loss
,
d_loss_cls
,
d_loss_gp
=
exe
.
run
(
dis_trainer_program
,
dis_trainer_program
,
fetch_list
=
[
fetch_list
=
[
...
@@ -344,22 +349,27 @@ class StarGAN(object):
...
@@ -344,22 +349,27 @@ class StarGAN(object):
.
format
(
epoch_id
,
batch_id
,
g_loss_fake
[
0
],
.
format
(
epoch_id
,
batch_id
,
g_loss_fake
[
0
],
g_loss_rec
[
0
],
g_loss_cls
[
0
]))
g_loss_rec
[
0
],
g_loss_cls
[
0
]))
batch_time
=
time
.
time
()
-
s_time
batch_cost_averager
.
record
(
time
.
time
()
-
batch_start
)
t_time
+=
batch_time
if
(
batch_id
+
1
)
%
self
.
cfg
.
print_freq
==
0
:
if
(
batch_id
+
1
)
%
self
.
cfg
.
print_freq
==
0
:
print
(
"epoch{}: batch{}:
\n\
print
(
"epoch{}: batch{}:
\n\
d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {}
\n\
d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {}
\n\
Batch_time_cost: {}"
.
format
(
reader_cost: {}, Batch_time_cost: {}"
epoch_id
,
batch_id
,
d_loss_real
[
0
],
d_loss_fake
[
.
format
(
epoch_id
,
batch_id
,
d_loss_real
[
0
],
0
],
d_loss_cls
[
0
],
d_loss_gp
[
0
],
batch_time
))
d_loss_fake
[
0
],
d_loss_cls
[
0
],
d_loss_gp
[
0
],
reader_cost_averager
.
get_average
(),
batch_cost_averager
.
get_average
()))
reader_cost_averager
.
reset
()
batch_cost_averager
.
reset
()
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
batch_id
+=
1
batch_id
+=
1
total_train_batch
+=
1
# used for benchmark
batch_start
=
time
.
time
()
# used for ce
# used for ce
if
self
.
cfg
.
enable_ce
and
batch_id
==
100
:
if
self
.
cfg
.
enable_ce
and
batch_id
==
100
:
break
break
total_train_batch
+=
1
# used for benchmark
# profiler tools
# profiler tools
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
if
self
.
cfg
.
profile
and
epoch_id
==
0
and
batch_id
==
self
.
cfg
.
print_freq
:
profiler
.
reset_profiler
()
profiler
.
reset_profiler
()
...
...
PaddleCV/gan/util/timer.py
0 → 100644
浏览文件 @
93c4daa4
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
time
class
TimeAverager
(
object
):
def
__init__
(
self
):
self
.
reset
()
def
reset
(
self
):
self
.
_cnt
=
0
self
.
_total_time
=
0
def
record
(
self
,
usetime
):
self
.
_cnt
+=
1
self
.
_total_time
+=
usetime
def
get_average
(
self
):
if
self
.
_cnt
==
0
:
return
0
return
self
.
_total_time
/
self
.
_cnt
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录