Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
93756632
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
93756632
编写于
12月 03, 2018
作者:
Y
Yibing Liu
提交者:
GitHub
12月 03, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Merge with develop branch (#1056)
上级
c19f7ac1
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
219 addition
and
172 deletion
+219
-172
fluid/DeepASR/.gitignore
fluid/DeepASR/.gitignore
+1
-0
fluid/DeepASR/data_utils/util.py
fluid/DeepASR/data_utils/util.py
+0
-10
fluid/DeepASR/decoder/.gitignore
fluid/DeepASR/decoder/.gitignore
+4
-0
fluid/DeepASR/examples/aishell/.gitignore
fluid/DeepASR/examples/aishell/.gitignore
+4
-0
fluid/DeepASR/examples/aishell/train.sh
fluid/DeepASR/examples/aishell/train.sh
+3
-2
fluid/DeepASR/model_utils/model.py
fluid/DeepASR/model_utils/model.py
+45
-78
fluid/DeepASR/train.py
fluid/DeepASR/train.py
+162
-82
未找到文件。
fluid/DeepASR/.gitignore
0 → 100644
浏览文件 @
93756632
.idea
fluid/DeepASR/data_utils/util.py
浏览文件 @
93756632
...
...
@@ -25,16 +25,6 @@ def to_lodtensor(data, place):
return
res
def
lodtensor_to_ndarray
(
lod_tensor
):
"""conver lodtensor to ndarray
"""
dims
=
lod_tensor
.
_get_dims
()
ret
=
np
.
zeros
(
shape
=
dims
).
astype
(
'float32'
)
for
i
in
xrange
(
np
.
product
(
dims
)):
ret
.
ravel
()[
i
]
=
lod_tensor
.
get_float_element
(
i
)
return
ret
,
lod_tensor
.
lod
()
def
split_infer_result
(
infer_seq
,
lod
):
infer_batch
=
[]
for
i
in
xrange
(
0
,
len
(
lod
[
0
])
-
1
):
...
...
fluid/DeepASR/decoder/.gitignore
0 → 100644
浏览文件 @
93756632
ThreadPool
build
post_latgen_faster_mapped.so
pybind11
fluid/DeepASR/examples/aishell/.gitignore
0 → 100644
浏览文件 @
93756632
aux.tar.gz
aux
data
checkpoints
fluid/DeepASR/examples/aishell/train.sh
浏览文件 @
93756632
export
CUDA_VISIBLE_DEVICES
=
4,5,6,7
python
-u
../../train.py
--train_feature_lst
data/train_feature.lst
\
python
-u
../../train.py
--train_feature_lst
data/train_feature.lst
\
--train_label_lst
data/train_label.lst
\
--val_feature_lst
data/val_feature.lst
\
--val_label_lst
data/val_label.lst
\
...
...
@@ -7,7 +7,8 @@ python -u ../../train.py --train_feature_lst data/train_feature.lst \
--checkpoints
checkpoints
\
--frame_dim
80
\
--class_num
3040
\
--print_per_batches
100
\
--infer_models
''
\
--batch_size
64
\
--batch_size
16
\
--learning_rate
6.4e-5
\
--parallel
fluid/DeepASR/model_utils/model.py
浏览文件 @
93756632
...
...
@@ -5,19 +5,21 @@ from __future__ import print_function
import
paddle.fluid
as
fluid
def
stacked_lstmp_model
(
frame_dim
,
def
stacked_lstmp_model
(
feature
,
label
,
hidden_dim
,
proj_dim
,
stacked_num
,
class_num
,
parallel
=
False
,
is_train
=
True
):
""" The model for DeepASR. The main structure is composed of stacked
identical LSTMP (LSTM with recurrent projection) layers.
"""
The model for DeepASR. The main structure is composed of stacked
identical LSTMP (LSTM with recurrent projection) layers.
When running in training and validation phase, the feeding dictionary
is {'feature', 'label'}, fed by the LodTensor for feature data and
label data respectively. And in inference, only `feature` is needed.
When running in training and validation phase, the feeding dictionary
is {'feature', 'label'}, fed by the LodTensor for feature data and
label data respectively. And in inference, only `feature` is needed.
Args:
frame_dim(int): The frame dimension of feature data.
...
...
@@ -28,80 +30,45 @@ def stacked_lstmp_model(frame_dim,
is_train(bool): Run in training phase or not, default `True`.
class_dim(int): The number of output classes.
"""
conv1
=
fluid
.
layers
.
conv2d
(
input
=
feature
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
bias_attr
=
True
,
act
=
"relu"
)
# network configuration
def
_net_conf
(
feature
,
label
):
conv1
=
fluid
.
layers
.
conv2d
(
input
=
feature
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
bias_attr
=
True
,
act
=
"relu"
)
pool1
=
fluid
.
layers
.
pool2d
(
conv1
,
pool_size
=
3
,
pool_type
=
"max"
,
pool_stride
=
2
,
pool_padding
=
0
)
stack_input
=
pool1
for
i
in
range
(
stacked_num
):
fc
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
hidden_dim
*
4
,
bias_attr
=
None
)
proj
,
cell
=
fluid
.
layers
.
dynamic_lstmp
(
input
=
fc
,
size
=
hidden_dim
*
4
,
proj_size
=
proj_dim
,
bias_attr
=
True
,
use_peepholes
=
True
,
is_reverse
=
False
,
cell_activation
=
"tanh"
,
proj_activation
=
"tanh"
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
proj
,
is_test
=
not
is_train
,
momentum
=
0.9
,
epsilon
=
1e-05
,
data_layout
=
'NCHW'
)
stack_input
=
bn
prediction
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
class_num
,
act
=
'softmax'
)
pool1
=
fluid
.
layers
.
pool2d
(
conv1
,
pool_size
=
3
,
pool_type
=
"max"
,
pool_stride
=
2
,
pool_padding
=
0
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
prediction
,
avg_cost
,
acc
# data feeder
feature
=
fluid
.
layers
.
data
(
name
=
"feature"
,
shape
=
[
-
1
,
3
,
11
,
frame_dim
],
dtype
=
"float32"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
if
parallel
:
# When the execution place is specified to CUDAPlace, the program will
# run on all $CUDA_VISIBLE_DEVICES GPUs. Otherwise the program will
# run on all CPU devices.
places
=
fluid
.
layers
.
device
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
feat_
=
pd
.
read_input
(
feature
)
label_
=
pd
.
read_input
(
label
)
prediction
,
avg_cost
,
acc
=
_net_conf
(
feat_
,
label_
)
for
out
in
[
prediction
,
avg_cost
,
acc
]:
pd
.
write_output
(
out
)
stack_input
=
pool1
for
i
in
range
(
stacked_num
):
fc
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
hidden_dim
*
4
,
bias_attr
=
None
)
proj
,
cell
=
fluid
.
layers
.
dynamic_lstmp
(
input
=
fc
,
size
=
hidden_dim
*
4
,
proj_size
=
proj_dim
,
bias_attr
=
True
,
use_peepholes
=
True
,
is_reverse
=
False
,
cell_activation
=
"tanh"
,
proj_activation
=
"tanh"
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
proj
,
is_test
=
not
is_train
,
momentum
=
0.9
,
epsilon
=
1e-05
,
data_layout
=
'NCHW'
)
stack_input
=
bn
# get mean loss and acc through every devices.
prediction
,
avg_cost
,
acc
=
pd
()
prediction
.
stop_gradient
=
True
avg_cost
=
fluid
.
layers
.
mean
(
x
=
avg_cost
)
acc
=
fluid
.
layers
.
mean
(
x
=
acc
)
else
:
prediction
,
avg_cost
,
acc
=
_net_conf
(
feature
,
label
)
prediction
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
class_num
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
prediction
,
avg_cost
,
acc
fluid/DeepASR/train.py
浏览文件 @
93756632
...
...
@@ -14,7 +14,6 @@ import data_utils.augmentor.trans_add_delta as trans_add_delta
import
data_utils.augmentor.trans_splice
as
trans_splice
import
data_utils.augmentor.trans_delay
as
trans_delay
import
data_utils.async_data_reader
as
reader
from
data_utils.util
import
lodtensor_to_ndarray
from
model_utils.model
import
stacked_lstmp_model
...
...
@@ -24,7 +23,8 @@ def parse_args():
'--batch_size'
,
type
=
int
,
default
=
32
,
help
=
'The sequence number of a batch data. (default: %(default)d)'
)
help
=
'The sequence number of a batch data. Batch size per GPU. (default: %(default)d)'
)
parser
.
add_argument
(
'--minimum_batch_size'
,
type
=
int
,
...
...
@@ -147,29 +147,72 @@ def train(args):
if
args
.
infer_models
!=
''
and
not
os
.
path
.
exists
(
args
.
infer_models
):
os
.
mkdir
(
args
.
infer_models
)
prediction
,
avg_cost
,
accuracy
=
stacked_lstmp_model
(
frame_dim
=
args
.
frame_dim
,
hidden_dim
=
args
.
hidden_dim
,
proj_dim
=
args
.
proj_dim
,
stacked_num
=
args
.
stacked_num
,
class_num
=
args
.
class_num
,
parallel
=
args
.
parallel
)
# program for test
test_program
=
fluid
.
default_main_program
().
clone
()
#optimizer = fluid.optimizer.Momentum(learning_rate=args.learning_rate, momentum=0.9)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
args
.
learning_rate
,
decay_steps
=
1879
,
decay_rate
=
1
/
1.2
,
staircase
=
True
))
optimizer
.
minimize
(
avg_cost
)
train_program
=
fluid
.
Program
()
train_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
train_startup
):
with
fluid
.
unique_name
.
guard
():
py_train_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
([
-
1
,
3
,
11
,
args
.
frame_dim
],
[
-
1
,
1
]),
dtypes
=
[
'float32'
,
'int64'
],
lod_levels
=
[
1
,
1
],
name
=
'train_reader'
)
feature
,
label
=
fluid
.
layers
.
read_file
(
py_train_reader
)
prediction
,
avg_cost
,
accuracy
=
stacked_lstmp_model
(
feature
=
feature
,
label
=
label
,
hidden_dim
=
args
.
hidden_dim
,
proj_dim
=
args
.
proj_dim
,
stacked_num
=
args
.
stacked_num
,
class_num
=
args
.
class_num
)
# optimizer = fluid.optimizer.Momentum(learning_rate=args.learning_rate, momentum=0.9)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
args
.
learning_rate
,
decay_steps
=
1879
,
decay_rate
=
1
/
1.2
,
staircase
=
True
))
optimizer
.
minimize
(
avg_cost
)
fluid
.
memory_optimize
(
train_program
)
test_program
=
fluid
.
Program
()
test_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
test_program
,
test_startup
):
with
fluid
.
unique_name
.
guard
():
py_test_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
([
-
1
,
3
,
11
,
args
.
frame_dim
],
[
-
1
,
1
]),
dtypes
=
[
'float32'
,
'int64'
],
lod_levels
=
[
1
,
1
],
name
=
'test_reader'
)
feature
,
label
=
fluid
.
layers
.
read_file
(
py_test_reader
)
prediction
,
avg_cost
,
accuracy
=
stacked_lstmp_model
(
feature
=
feature
,
label
=
label
,
hidden_dim
=
args
.
hidden_dim
,
proj_dim
=
args
.
proj_dim
,
stacked_num
=
args
.
stacked_num
,
class_num
=
args
.
class_num
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
place
=
fluid
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
train_startup
)
exe
.
run
(
test_startup
)
if
args
.
parallel
:
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
num_iteration_per_drop_scope
=
10
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
(
args
.
device
==
'GPU'
),
loss_name
=
avg_cost
.
name
,
exec_strategy
=
exec_strategy
,
main_program
=
train_program
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
(
args
.
device
==
'GPU'
),
main_program
=
test_program
,
exec_strategy
=
exec_strategy
,
share_vars_from
=
train_exe
)
# resume training if initial model provided.
if
args
.
init_model_path
is
not
None
:
...
...
@@ -181,15 +224,24 @@ def train(args):
trans_splice
.
TransSplice
(
5
,
5
),
trans_delay
.
TransDelay
(
5
)
]
feature_t
=
fluid
.
LoDTensor
()
label_t
=
fluid
.
LoDTensor
()
# bind train_reader
train_data_reader
=
reader
.
AsyncDataReader
(
args
.
train_feature_lst
,
args
.
train_label_lst
,
-
1
,
split_sentence_threshold
=
1024
)
# validation
def
test
(
exe
):
# If test data not found, return invalid cost and accuracy
if
not
(
os
.
path
.
exists
(
args
.
val_feature_lst
)
and
os
.
path
.
exists
(
args
.
val_label_lst
)):
return
-
1.0
,
-
1.0
train_data_reader
.
set_transformers
(
ltrans
)
def
train_data_provider
():
for
data
in
train_data_reader
.
batch_iterator
(
args
.
batch_size
,
args
.
minimum_batch_size
):
yield
batch_data_to_lod_tensors
(
args
,
data
,
fluid
.
CPUPlace
())
py_train_reader
.
decorate_tensor_provider
(
train_data_provider
)
if
(
os
.
path
.
exists
(
args
.
val_feature_lst
)
and
os
.
path
.
exists
(
args
.
val_label_lst
)):
# test data reader
test_data_reader
=
reader
.
AsyncDataReader
(
args
.
val_feature_lst
,
...
...
@@ -197,86 +249,101 @@ def train(args):
-
1
,
split_sentence_threshold
=
1024
)
test_data_reader
.
set_transformers
(
ltrans
)
test_costs
,
test_accs
=
[],
[]
for
batch_id
,
batch_data
in
enumerate
(
test_data_reader
.
batch_iterator
(
args
.
batch_size
,
args
.
minimum_batch_size
)):
# load_data
(
features
,
labels
,
lod
,
_
)
=
batch_data
features
=
np
.
reshape
(
features
,
(
-
1
,
11
,
3
,
args
.
frame_dim
))
features
=
np
.
transpose
(
features
,
(
0
,
2
,
1
,
3
))
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
label_t
.
set_lod
([
lod
])
cost
,
acc
=
exe
.
run
(
test_program
,
feed
=
{
"feature"
:
feature_t
,
"label"
:
label_t
},
fetch_list
=
[
avg_cost
,
accuracy
],
return_numpy
=
False
)
test_costs
.
append
(
lodtensor_to_ndarray
(
cost
)[
0
])
test_accs
.
append
(
lodtensor_to_ndarray
(
acc
)[
0
])
return
np
.
mean
(
test_costs
),
np
.
mean
(
test_accs
)
# train data reader
train_data_reader
=
reader
.
AsyncDataReader
(
args
.
train_feature_lst
,
args
.
train_label_lst
,
-
1
,
split_sentence_threshold
=
1024
)
def
test_data_provider
():
for
data
in
test_data_reader
.
batch_iterator
(
args
.
batch_size
,
args
.
minimum_batch_size
):
yield
batch_data_to_lod_tensors
(
args
,
data
,
fluid
.
CPUPlace
())
py_test_reader
.
decorate_tensor_provider
(
test_data_provider
)
# validation
def
test
(
exe
):
# If test data not found, return invalid cost and accuracy
if
not
(
os
.
path
.
exists
(
args
.
val_feature_lst
)
and
os
.
path
.
exists
(
args
.
val_label_lst
)):
return
-
1.0
,
-
1.0
batch_id
=
0
test_costs
=
[]
test_accs
=
[]
while
True
:
if
batch_id
==
0
:
py_test_reader
.
start
()
try
:
if
args
.
parallel
:
cost
,
acc
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
,
accuracy
.
name
],
return_numpy
=
False
)
else
:
cost
,
acc
=
exe
.
run
(
program
=
test_program
,
fetch_list
=
[
avg_cost
,
accuracy
],
return_numpy
=
False
)
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
test_costs
.
append
(
np
.
array
(
cost
)[
0
])
test_accs
.
append
(
np
.
array
(
acc
)[
0
])
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
py_test_reader
.
reset
()
break
return
np
.
mean
(
test_costs
),
np
.
mean
(
test_accs
)
train_data_reader
.
set_transformers
(
ltrans
)
# train
for
pass_id
in
xrange
(
args
.
pass_num
):
pass_start_time
=
time
.
time
()
for
batch_id
,
batch_data
in
enumerate
(
train_data_reader
.
batch_iterator
(
args
.
batch_size
,
args
.
minimum_batch_size
)):
# load_data
(
features
,
labels
,
lod
,
name_lst
)
=
batch_data
features
=
np
.
reshape
(
features
,
(
-
1
,
11
,
3
,
args
.
frame_dim
))
features
=
np
.
transpose
(
features
,
(
0
,
2
,
1
,
3
))
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
label_t
.
set_lod
([
lod
])
batch_id
=
0
while
True
:
if
batch_id
==
0
:
py_train_reader
.
start
()
to_print
=
batch_id
>
0
and
(
batch_id
%
args
.
print_per_batches
==
0
)
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"feature"
:
feature_t
,
"label"
:
label_t
},
fetch_list
=
[
avg_cost
,
accuracy
]
if
to_print
else
[],
return_numpy
=
False
)
try
:
if
args
.
parallel
:
outs
=
train_exe
.
run
(
fetch_list
=
[
avg_cost
.
name
,
accuracy
.
name
]
if
to_print
else
[],
return_numpy
=
False
)
else
:
outs
=
exe
.
run
(
program
=
train_program
,
fetch_list
=
[
avg_cost
,
accuracy
]
if
to_print
else
[],
return_numpy
=
False
)
except
fluid
.
core
.
EOFException
:
py_train_reader
.
reset
()
break
if
to_print
:
print
(
"
\n
Batch %d, train cost: %f, train acc: %f"
%
(
batch_id
,
lodtensor_to_ndarray
(
outs
[
0
])[
0
],
lodtensor_to_ndarray
(
outs
[
1
])[
0
]))
if
args
.
parallel
:
print
(
"
\n
Batch %d, train cost: %f, train acc: %f"
%
(
batch_id
,
np
.
mean
(
outs
[
0
]),
np
.
mean
(
outs
[
1
])))
else
:
print
(
"
\n
Batch %d, train cost: %f, train acc: %f"
%
(
batch_id
,
np
.
array
(
outs
[
0
])[
0
],
np
.
array
(
outs
[
1
])[
0
]))
# save the latest checkpoint
if
args
.
checkpoints
!=
''
:
model_path
=
os
.
path
.
join
(
args
.
checkpoints
,
"deep_asr.latest.checkpoint"
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
,
train_program
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
batch_id
+=
1
# run test
val_cost
,
val_acc
=
test
(
exe
)
val_cost
,
val_acc
=
test
(
test_exe
if
args
.
parallel
else
exe
)
# save checkpoint per pass
if
args
.
checkpoints
!=
''
:
model_path
=
os
.
path
.
join
(
args
.
checkpoints
,
"deep_asr.pass_"
+
str
(
pass_id
)
+
".checkpoint"
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
,
train_program
)
# save inference model
if
args
.
infer_models
!=
''
:
model_path
=
os
.
path
.
join
(
args
.
infer_models
,
"deep_asr.pass_"
+
str
(
pass_id
)
+
".infer.model"
)
fluid
.
io
.
save_inference_model
(
model_path
,
[
"feature"
],
[
prediction
],
exe
)
[
prediction
],
exe
,
train_program
)
# cal pass time
pass_end_time
=
time
.
time
()
time_consumed
=
pass_end_time
-
pass_start_time
...
...
@@ -285,6 +352,19 @@ def train(args):
(
pass_id
,
time_consumed
,
val_cost
,
val_acc
))
def
batch_data_to_lod_tensors
(
args
,
batch_data
,
place
):
features
,
labels
,
lod
,
name_lst
=
batch_data
features
=
np
.
reshape
(
features
,
(
-
1
,
11
,
3
,
args
.
frame_dim
))
features
=
np
.
transpose
(
features
,
(
0
,
2
,
1
,
3
))
feature_t
=
fluid
.
LoDTensor
()
label_t
=
fluid
.
LoDTensor
()
feature_t
.
set
(
features
,
place
)
feature_t
.
set_lod
([
lod
])
label_t
.
set
(
labels
,
place
)
label_t
.
set_lod
([
lod
])
return
feature_t
,
label_t
if
__name__
==
'__main__'
:
args
=
parse_args
()
print_arguments
(
args
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录