Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
920d45fc
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
920d45fc
编写于
1月 15, 2020
作者:
S
shippingwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine
上级
87592366
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
123 addition
and
110 deletion
+123
-110
dygraph/tsm/config_utils.py
dygraph/tsm/config_utils.py
+12
-2
dygraph/tsm/model.py
dygraph/tsm/model.py
+48
-48
dygraph/tsm/reader.py
dygraph/tsm/reader.py
+12
-17
dygraph/tsm/run.sh
dygraph/tsm/run.sh
+4
-9
dygraph/tsm/train.py
dygraph/tsm/train.py
+47
-33
dygraph/tsm/tsm.yaml
dygraph/tsm/tsm.yaml
+0
-1
未找到文件。
dygraph/tsm/config_utils.py
浏览文件 @
920d45fc
# Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 20
20
PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
...
...
@@ -13,7 +13,6 @@
#limitations under the License.
import
yaml
from
.utility
import
AttrDict
import
logging
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -25,6 +24,17 @@ CONFIG_SECS = [
]
class
AttrDict
(
dict
):
def
__getattr__
(
self
,
key
):
return
self
[
key
]
def
__setattr__
(
self
,
key
,
value
):
if
key
in
self
.
__dict__
:
self
.
__dict__
[
key
]
=
value
else
:
self
[
key
]
=
value
def
parse_config
(
cfg_file
):
"""Load a config file into AttrDict"""
import
yaml
...
...
dygraph/tsm/model.py
浏览文件 @
920d45fc
...
...
@@ -20,20 +20,22 @@ from paddle.fluid.layer_helper import LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
import
math
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
#num_channels,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
def
__init__
(
self
,
name_scope
,
#num_channels,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
(
name_scope
)
self
.
_conv
=
Conv2D
(
self
.
full_name
(),
# num_channels = num_channels,
# num_channels = num_channels,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
...
...
@@ -43,10 +45,12 @@ class ConvBNLayer(fluid.dygraph.Layer):
param_attr
=
fluid
.
param_attr
.
ParamAttr
(),
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(),
bias_attr
=
fluid
.
param_attr
.
ParamAttr
())
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(),
bias_attr
=
fluid
.
param_attr
.
ParamAttr
())
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
...
...
@@ -54,32 +58,34 @@ class ConvBNLayer(fluid.dygraph.Layer):
return
y
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
def
__init__
(
self
,
name_scope
,
# num_channels,
num_filters
,
stride
,
shortcut
=
True
,
seg_num
=
8
):
num_filters
,
stride
,
shortcut
=
True
,
seg_num
=
8
):
super
(
BottleneckBlock
,
self
).
__init__
(
name_scope
)
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
# num_channels=num_channels,
# num_channels=num_channels,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
self
.
full_name
(),
# num_channels=num_filters,
# num_channels=num_filters,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
self
.
full_name
(),
# num_channels=num_filters,
# num_channels=num_filters,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
...
...
@@ -87,7 +93,7 @@ class BottleneckBlock(fluid.dygraph.Layer):
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
full_name
(),
# num_channels=num_channels,
# num_channels=num_channels,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
stride
)
...
...
@@ -103,33 +109,28 @@ class BottleneckBlock(fluid.dygraph.Layer):
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
"relu"
)
return
y
class
TSM_ResNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
config
):
super
(
TSM_ResNet
,
self
).
__init__
(
name_scope
)
self
.
layers
=
config
.
MODEL
.
layers
self
.
layers
=
config
.
MODEL
.
num_
layers
self
.
seg_num
=
config
.
MODEL
.
seg_num
self
.
class_dim
=
config
.
MODEL
.
class_dim
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
self
.
class_dim
=
config
.
MODEL
.
num_classes
if
layers
==
50
:
if
self
.
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
else
:
raise
NotImplementedError
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
self
.
full_name
(),
# num_channels=3,
# num_channels=3,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
...
...
@@ -142,7 +143,7 @@ class TSM_ResNet(fluid.dygraph.Layer):
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
# num_channels = 64
# num_channels = 64
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
...
...
@@ -151,18 +152,16 @@ class TSM_ResNet(fluid.dygraph.Layer):
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
self
.
full_name
(),
# num_channels=num_channels,
# num_channels=num_channels,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
,
seg_num
=
seg_num
))
# num_channels = int(bottleneck_block._num_channels_out)
seg_num
=
se
lf
.
se
g_num
))
# num_channels = int(bottleneck_block._num_channels_out)
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
self
.
full_name
(),
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
full_name
(),
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
import
math
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
...
...
@@ -173,17 +172,18 @@ class TSM_ResNet(fluid.dygraph.Layer):
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
learning_rate
=
2.0
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.
)))
learning_rate
=
2.0
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.
)))
def
forward
(
self
,
inputs
):
y
=
fluid
.
layers
.
reshape
(
inputs
,
[
-
1
,
inputs
.
shape
[
2
],
inputs
.
shape
[
3
],
inputs
.
shape
[
4
]])
y
=
fluid
.
layers
.
reshape
(
inputs
,
[
-
1
,
inputs
.
shape
[
2
],
inputs
.
shape
[
3
],
inputs
.
shape
[
4
]])
y
=
self
.
conv
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
dropout
(
y
,
dropout_prob
=
0.5
)
y
=
fluid
.
layers
.
reshape
(
y
,
[
-
1
,
self
.
seg_num
,
y
.
shape
[
1
]])
...
...
dygraph/tsm/reader.py
浏览文件 @
920d45fc
...
...
@@ -53,19 +53,19 @@ class KineticsReader():
"""
def
__init__
(
self
,
name
,
mode
,
cfg
):
super
(
KineticsReader
,
self
).
__init__
(
name
,
mode
,
cfg
)
self
.
mode
=
mode
self
.
name
=
name
self
.
format
=
cfg
.
MODEL
.
format
self
.
num_classes
=
self
.
get_config_from_sec
(
'model'
,
'num_classes'
)
self
.
seg_num
=
self
.
get_config_from_sec
(
'model'
,
'seg_num'
)
self
.
seglen
=
self
.
get_config_from_sec
(
'model'
,
'seglen'
)
self
.
seg_num
=
self
.
get_config_from_sec
(
mode
,
'seg_num'
,
self
.
seg_num
)
self
.
short_size
=
self
.
get_config_from_sec
(
mode
,
'short_size'
)
self
.
target_size
=
self
.
get_config_from_sec
(
mode
,
'target_size'
)
self
.
num_reader_threads
=
self
.
get_config_from_sec
(
mode
,
'num_reader_threads'
)
self
.
buf_size
=
self
.
get_config_from_sec
(
mode
,
'buf_size'
)
self
.
fix_random_seed
=
self
.
get_config_from_sec
(
mode
,
'fix_random_seed'
)
self
.
num_classes
=
cfg
.
MODEL
.
num_classes
self
.
seg_num
=
cfg
.
MODEL
.
seg_num
self
.
seglen
=
cfg
.
MODEL
.
seglen
# self.seg_num = cfg[mode.upper()]['seg_num']
self
.
short_size
=
cfg
[
mode
.
upper
()][
'short_size'
]
self
.
target_size
=
cfg
[
mode
.
upper
()][
'target_size'
]
self
.
num_reader_threads
=
cfg
[
mode
.
upper
()][
'num_reader_threads'
]
self
.
buf_size
=
cfg
[
mode
.
upper
()][
'buf_size'
]
self
.
img_mean
=
np
.
array
(
cfg
.
MODEL
.
image_mean
).
reshape
(
[
3
,
1
,
1
]).
astype
(
np
.
float32
)
...
...
@@ -78,10 +78,6 @@ class KineticsReader():
self
.
video_path
=
cfg
[
mode
.
upper
()][
'video_path'
]
else
:
self
.
video_path
=
''
if
self
.
fix_random_seed
:
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
self
.
num_reader_threads
=
1
def
create_reader
(
self
):
# if set video_path for inference mode, just load this single video
...
...
@@ -318,7 +314,6 @@ def group_multi_scale_crop(img_group, target_size, scales=None, \
w_offset
,
h_offset
=
random
.
choice
(
ret
)
return
crop_pair
[
0
],
crop_pair
[
1
],
w_offset
,
h_offset
crop_w
,
crop_h
,
offset_w
,
offset_h
=
_sample_crop_size
(
im_size
)
...
...
dygraph/tsm/run.sh
浏览文件 @
920d45fc
...
...
@@ -16,7 +16,6 @@ resume="" # set pretrain model path if needed
save_dir
=
"./data/checkpoints"
save_inference_dir
=
"./data/inference_model"
use_gpu
=
True
fix_random_seed
=
False
log_interval
=
1
valid_interval
=
1
...
...
@@ -36,8 +35,7 @@ if [ "$mode"x == "train"x ]; then
--log_interval
=
$log_interval
\
--valid_interval
=
$valid_interval
\
--use_gpu
=
$use_gpu
\
--save_dir
=
$save_dir
\
--fix_random_seed
=
$fix_random_seed
--save_dir
=
$save_dir
elif
[
"
$pretrain
"
x
!=
""
x
]
;
then
python train.py
--model_name
=
$name
\
--config
=
$configs
\
...
...
@@ -45,17 +43,14 @@ if [ "$mode"x == "train"x ]; then
--log_interval
=
$log_interval
\
--valid_interval
=
$valid_interval
\
--use_gpu
=
$use_gpu
\
--save_dir
=
$save_dir
\
--fix_random_seed
=
$fix_random_seed
--save_dir
=
$save_dir
else
nohup
python train.py
--model_name
=
$name
\
python train.py
--model_name
=
$name
\
--config
=
$configs
\
--log_interval
=
$log_interval
\
--valid_interval
=
$valid_interval
\
--use_gpu
=
$use_gpu
\
--save_dir
=
$save_dir
\
--fix_random_seed
=
$fix_random_seed
\
>
dy_debug.log 2>&1 &
--save_dir
=
$save_dir
fi
elif
[
"
$mode
"
x
==
"eval"
x
]
;
then
echo
$mode
$name
$configs
$weights
...
...
dygraph/tsm/train.py
浏览文件 @
920d45fc
...
...
@@ -23,7 +23,7 @@ import paddle.fluid as fluid
from
paddle.fluid.dygraph.base
import
to_variable
from
model
import
TSM_ResNet
from
utils.
config_utils
import
*
from
config_utils
import
*
from
reader
import
KineticsReader
logging
.
root
.
handlers
=
[]
...
...
@@ -31,13 +31,11 @@ FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
,
stream
=
sys
.
stdout
)
logger
=
logging
.
getLogger
(
__name__
)
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Paddle Video train script"
)
parser
.
add_argument
(
'--model_name'
,
type
=
str
,
default
=
'TSM'
,
help
=
'name of model to train.'
)
'--model_name'
,
type
=
str
,
default
=
'TSM'
,
help
=
'name of model to train.'
)
parser
.
add_argument
(
'--config'
,
type
=
str
,
...
...
@@ -100,7 +98,7 @@ def parse_args():
def
val
(
epoch
,
model
,
cfg
,
args
):
reader
=
KineticsReader
(
name
=
"tsm"
,
mode
=
"valid"
,
cfg
=
cfg
)
reader
=
KineticsReader
(
name
=
"tsm"
,
mode
=
"valid"
,
cfg
=
cfg
)
total_loss
=
0.0
total_acc1
=
0.0
total_acc5
=
0.0
...
...
@@ -112,10 +110,11 @@ def val(epoch, model, cfg, args):
imgs
=
to_variable
(
x_data
)
labels
=
to_variable
(
y_data
)
labels
.
stop_gradient
=
True
outputs
=
model
(
imgs
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
outputs
,
label
=
labels
,
ignore_index
=-
1
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
outputs
,
label
=
labels
,
ignore_index
=-
1
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
5
)
...
...
@@ -125,28 +124,33 @@ def val(epoch, model, cfg, args):
total_acc5
+=
acc_top5
.
numpy
()[
0
]
total_sample
+=
1
print
(
'TEST Epoch {}, iter {}, loss = {}, acc1 {}, acc5 {}'
.
format
(
epoch
,
batch_id
,
avg_loss
.
numpy
()[
0
],
acc_top1
.
numpy
()[
0
],
acc_top5
.
numpy
()[
0
]))
print
(
'TEST Epoch {}, iter {}, loss = {}, acc1 {}, acc5 {}'
.
format
(
epoch
,
batch_id
,
avg_loss
.
numpy
()[
0
],
acc_top1
.
numpy
()[
0
],
acc_top5
.
numpy
()[
0
]))
print
(
'Finish loss {} , acc1 {} , acc5 {}'
.
format
(
total_loss
/
total_sample
,
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
print
(
'Finish loss {} , acc1 {} , acc5 {}'
.
format
(
total_loss
/
total_sample
,
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
def
optimizer
(
cfg
):
def
create_optimizer
(
cfg
):
total_videos
=
cfg
.
total_videos
step
=
int
(
total_videos
/
cfg
.
batch_size
+
1
)
bd
=
[
e
*
step
for
e
in
cfg
.
decay_epochs
]
base_lr
=
cfg
.
base_
learning_rate
base_lr
=
cfg
.
learning_rate
lr_decay
=
cfg
.
learning_rate_decay
lr
=
[
base_lr
,
base_lr
*
lr_decay
,
base_lr
*
lr_decay
*
lr_decay
]
l2_weight_decay
=
cfg
.
l2_weight_decay
momentum
=
cfg
.
momentum
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
momentum
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_weight_decay
))
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
momentum
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_weight_decay
))
return
optimizer
def
train
(
args
):
config
=
parse_config
(
args
.
config
)
train_config
=
merge_configs
(
config
,
'train'
,
vars
(
args
))
...
...
@@ -154,7 +158,6 @@ def train(args):
print_configs
(
train_config
,
'Train'
)
#train_model = models.get_model(args.model_name, train_config, mode='train')
use_data_parallel
=
False
trainer_count
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
().
dev_id
)
\
...
...
@@ -164,11 +167,12 @@ def train(args):
if
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
video_model
=
TSM_ResNet
(
train_config
)
optimizer
=
optimizer
(
train_config
.
MODEL
)
video_model
=
TSM_ResNet
(
""
,
train_config
)
optimizer
=
create_optimizer
(
train_config
.
TRAIN
)
if
use_data_parallel
:
video_model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
video_model
,
strategy
)
video_model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
video_model
,
strategy
)
bs_denominator
=
1
if
args
.
use_gpu
:
# check number of GPUs
...
...
@@ -188,27 +192,35 @@ def train(args):
train_config
.
TRAIN
.
batch_size
=
int
(
train_config
.
TRAIN
.
batch_size
/
bs_denominator
)
train_reader
=
KineticsReader
(
name
=
"tsm"
,
mode
=
"train"
,
cfg
=
train_config
)
valid_reader
=
get_reader
(
args
.
model_name
.
upper
(),
'valid'
,
valid_config
)
train_reader
=
KineticsReader
(
name
=
"tsm"
,
mode
=
"train"
,
cfg
=
train_config
)
valid_reader
=
KineticsReader
(
name
=
"tsm"
,
mode
=
"valid"
,
cfg
=
valid_config
)
train_reader
=
train_reader
.
create_reader
()
valid_reader
=
valid_reader
.
create_reader
()
if
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
)
for
epoch
in
range
(
args
.
epochs
):
for
epoch
in
range
(
train_config
.
TRAIN
.
epoch
):
video_model
.
train
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
x_data
=
np
.
array
([
item
[
0
]
for
item
in
data
])
y_data
=
np
.
array
([
item
[
1
]
for
item
in
data
]).
reshape
([
-
1
,
1
])
imgs
=
to_variable
(
x_data
)
labels
=
to_variable
(
y_data
)
labels
.
stop_gradient
=
True
outputs
=
video_model
(
imgs
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
outputs
,
label
=
labels
,
ignore_index
=-
1
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
outputs
,
label
=
labels
,
ignore_index
=-
1
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
5
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
outputs
,
label
=
labels
,
k
=
5
)
loss_array
=
avg_loss
.
numpy
()
if
use_data_parallel
:
...
...
@@ -220,11 +232,13 @@ def train(args):
optimizer
.
minimize
(
avg_loss
)
video_model
.
clear_gradients
()
print
(
'TRAIN Epoch {}, iter {}, loss = {}, acc1 {}, acc5 {}'
.
format
(
epoch
,
batch_id
,
loss_array
[
0
],
acc_top1
.
numpy
()[
0
],
acc_top5
.
numpy
()[
0
]))
print
(
'TRAIN Epoch {}, iter {}, loss = {}, acc1 {}, acc5 {}'
.
format
(
epoch
,
batch_id
,
loss_array
[
0
],
acc_top1
.
numpy
()[
0
],
acc_top5
.
numpy
()[
0
]))
video_model
.
eval
()
val
(
epoch
,
video_model
,
valid_config
,
args
)
if
fluid
.
dygraph
.
parallel
.
Env
().
local_rank
==
0
:
save_model_name
=
os
.
path
.
join
(
"final"
)
fluid
.
dygraph
.
save_dygraph
(
video_model
.
state_dict
(),
"final"
)
...
...
dygraph/tsm/tsm.yaml
浏览文件 @
920d45fc
...
...
@@ -25,7 +25,6 @@ TRAIN:
l2_weight_decay
:
1e-4
momentum
:
0.9
total_videos
:
8000
#239781
fix_random_seed
:
False
VALID
:
short_size
:
256
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录