未验证 提交 8fcd6c74 编写于 作者: M mapingshuo 提交者: GitHub

Update README.md

上级 b5090413
......@@ -102,21 +102,69 @@ You are supposed to get log like cdssm_base.log
## Results
We have implemeted 4 models for now, CDSSM(Convolutional Deep Structured Semantic Models) is a convolution-based model, Infer Sent Model and SSE(Shortcut-Stacked Encoders) are RNN-based models, and DecAtt(Decompose Attention) model is a attention-based model. In our experiment, we found that LSTM-based models outperform convolution-based model in test set accuracy. DecAtt model has fewer parameters than LSTM-based models, but it is very sensitive to the hyper-parameters when training.
### Models
|Model|features|Context Encoder|Match Layer|Classification Layer
|:----:|:----:|:----:|:----:|:----:|
|CDSSM|word|1 layer conv1d|concatenation|MLP
|DecAtt|word|Attention|concatenation|MLP
|InferSent|word|1 layer Bi-LSTM|concatenation/element-wise product/<br>absolute element-wise difference|MLP
|SSE|word|3 layer Bi-LSTM|concatenation/element-wise product/<br>absolute element-wise difference|MLP
#### CDSSM
```
@inproceedings{shen2014learning,
title={Learning semantic representations using convolutional neural networks for web search},
author={Shen, Yelong and He, Xiaodong and Gao, Jianfeng and Deng, Li and Mesnil, Gr{\'e}goire},
booktitle={Proceedings of the 23rd International Conference on World Wide Web},
pages={373--374},
year={2014},
organization={ACM}
}
```
#### InferSent
```
@article{conneau2017supervised,
title={Supervised learning of universal sentence representations from natural language inference data},
author={Conneau, Alexis and Kiela, Douwe and Schwenk, Holger and Barrault, Loic and Bordes, Antoine},
journal={arXiv preprint arXiv:1705.02364},
year={2017}
}
```
#### SSE
```
@article{nie2017shortcut,
title={Shortcut-stacked sentence encoders for multi-domain inference},
author={Nie, Yixin and Bansal, Mohit},
journal={arXiv preprint arXiv:1708.02312},
year={2017}
}
```
#### DecAtt
```
@article{tomar2017neural,
title={Neural paraphrase identification of questions with noisy pretraining},
author={Tomar, Gaurav Singh and Duque, Thyago and T{\"a}ckstr{\"o}m, Oscar and Uszkoreit, Jakob and Das, Dipanjan},
journal={arXiv preprint arXiv:1704.04565},
year={2017}
}
```
### Test Accuracy
|Model|dev accuracy| test accuracy
|:----:|:----:|:----:|
|CDSSM|||
|InferSent|||
|CDSSM|83.56%|82.83%|
|DecAtt|86.31%|86.22%|
|InferSentV1|86.91%|86.65%|
|InferSentV2|88.55%|88.43%|
|SSE|||
|DecAtt|||
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册