Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
8e79b07d
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8e79b07d
编写于
3月 29, 2019
作者:
W
Wu Yi
提交者:
GitHub
3月 29, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1925 from typhoonzero/add_allreduce_master_grad
add reduce master grad for fp16
上级
f88e3b80
df12c591
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
55 addition
and
12 deletion
+55
-12
fluid/PaddleCV/image_classification/dist_train/dist_train.py
fluid/PaddleCV/image_classification/dist_train/dist_train.py
+19
-8
fluid/PaddleCV/image_classification/utils/fp16_utils.py
fluid/PaddleCV/image_classification/utils/fp16_utils.py
+36
-4
未找到文件。
fluid/PaddleCV/image_classification/dist_train/dist_train.py
浏览文件 @
8e79b07d
...
...
@@ -46,7 +46,7 @@ def parse_args():
add_arg
(
'class_dim'
,
int
,
1000
,
"Class number."
)
add_arg
(
'image_shape'
,
str
,
"3,224,224"
,
"input image size"
)
add_arg
(
'model_save_dir'
,
str
,
"output"
,
"model save directory"
)
add_arg
(
'with_mem_opt'
,
bool
,
False
,
"Whether to use memory optimization or not."
)
add_arg
(
'with_mem_opt'
,
bool
,
False
,
"Whether to use memory optimization or not."
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'checkpoint'
,
str
,
None
,
"Whether to resume checkpoint."
)
add_arg
(
'lr'
,
float
,
0.1
,
"set learning rate."
)
...
...
@@ -57,6 +57,7 @@ def parse_args():
add_arg
(
'model_category'
,
str
,
"models"
,
"Whether to use models_name or not, valid value:'models','models_name'"
)
add_arg
(
'fp16'
,
bool
,
False
,
"Enable half precision training with fp16."
)
add_arg
(
'scale_loss'
,
float
,
1.0
,
"Scale loss for fp16."
)
add_arg
(
'reduce_master_grad'
,
bool
,
False
,
"Whether to allreduce fp32 gradients."
)
# for distributed
add_arg
(
'update_method'
,
str
,
"local"
,
"Can be local, pserver, nccl2."
)
add_arg
(
'multi_batch_repeat'
,
int
,
1
,
"Batch merge repeats."
)
...
...
@@ -66,6 +67,7 @@ def parse_args():
add_arg
(
'async_mode'
,
bool
,
False
,
"Async distributed training, only for pserver mode."
)
add_arg
(
'reduce_strategy'
,
str
,
"allreduce"
,
"Choose from reduce or allreduce."
)
add_arg
(
'skip_unbalanced_data'
,
bool
,
False
,
"Skip data not if data not balanced on nodes."
)
add_arg
(
'enable_sequential_execution'
,
bool
,
False
,
"Skip data not if data not balanced on nodes."
)
# yapf: enable
args
=
parser
.
parse_args
()
return
args
...
...
@@ -130,7 +132,7 @@ def build_program(is_train, main_prog, startup_prog, args):
if
os
.
getenv
(
"FLAGS_selected_gpus"
):
# in multi process mode, "trainer_count" will be total devices
# in the whole cluster, and we need to scale num_of nodes.
end_lr
*
=
device_num_per_worker
end_lr
/
=
device_num_per_worker
total_images
=
args
.
total_images
/
trainer_count
step
=
int
(
total_images
/
(
args
.
batch_size
*
args
.
multi_batch_repeat
)
+
1
)
...
...
@@ -158,7 +160,8 @@ def build_program(is_train, main_prog, startup_prog, args):
if
args
.
fp16
:
params_grads
=
optimizer
.
backward
(
avg_cost
)
master_params_grads
=
utils
.
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
args
.
scale_loss
)
params_grads
,
main_prog
,
startup_prog
,
args
.
scale_loss
,
reduce_master_grad
=
args
.
reduce_master_grad
)
optimizer
.
apply_gradients
(
master_params_grads
)
utils
.
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
else
:
...
...
@@ -239,11 +242,15 @@ def train_parallel(args):
append_bn_repeat_init_op
(
train_prog
,
startup_prog
,
args
.
multi_batch_repeat
)
startup_exe
.
run
(
startup_prog
)
if
args
.
checkpoint
:
fluid
.
io
.
load_persistables
(
startup_exe
,
args
.
checkpoint
,
main_program
=
train_prog
)
strategy
=
fluid
.
ExecutionStrategy
()
strategy
.
num_threads
=
args
.
num_threads
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_inplace
=
False
build_strategy
.
memory_optimize
=
False
build_strategy
.
enable_sequential_execution
=
bool
(
args
.
enable_sequential_execution
)
if
args
.
reduce_strategy
==
"reduce"
:
...
...
@@ -304,8 +311,8 @@ def train_parallel(args):
if
batch_id
%
30
==
0
:
fetch_ret
=
exe
.
run
(
fetch_list
)
fetched_data
=
[
np
.
mean
(
np
.
array
(
d
))
for
d
in
fetch_ret
]
print
(
"Pass
%d, batch %d
, loss %s, acc1: %s, acc5: %s, avg batch time %.4f"
%
(
pass_id
,
batch_id
,
fetched_data
[
0
],
fetched_data
[
1
],
print
(
"Pass
[%d/%d], batch [%d/%d]
, loss %s, acc1: %s, acc5: %s, avg batch time %.4f"
%
(
pass_id
,
args
.
num_epochs
,
batch_id
,
steps_per_pass
,
fetched_data
[
0
],
fetched_data
[
1
],
fetched_data
[
2
],
(
time
.
time
()
-
start_time
)
/
batch_id
))
else
:
fetch_ret
=
exe
.
run
([])
...
...
@@ -321,8 +328,7 @@ def train_parallel(args):
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
train_pyreader
.
reset
()
if
pass_id
>
args
.
start_test_pass
:
if
pass_id
>=
args
.
start_test_pass
:
if
args
.
multi_batch_repeat
>
1
:
copyback_repeat_bn_params
(
train_prog
)
test_fetch_list
=
[
test_cost
.
name
,
test_acc1
.
name
,
test_acc5
.
name
]
...
...
@@ -331,7 +337,12 @@ def train_parallel(args):
# test_ret = test_parallel(test_exe, test_prog, args, test_pyreader,test_fetch_list)
print
(
"Pass: %d, Test Loss %s, test acc1: %s, test acc5: %s
\n
"
%
(
pass_id
,
test_ret
[
0
],
test_ret
[
1
],
test_ret
[
2
]))
model_path
=
os
.
path
.
join
(
args
.
model_save_dir
+
'/'
+
args
.
model
,
str
(
pass_id
))
print
(
"saving model to "
,
model_path
)
if
not
os
.
path
.
isdir
(
model_path
):
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
startup_exe
,
model_path
,
main_program
=
train_prog
)
startup_exe
.
close
()
print
(
"total train time: "
,
time
.
time
()
-
over_all_start
)
...
...
fluid/PaddleCV/image_classification/utils/fp16_utils.py
浏览文件 @
8e79b07d
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
def
cast_fp16_to_fp32
(
i
,
o
,
prog
):
prog
.
global_block
().
append_op
(
...
...
@@ -43,8 +44,30 @@ def copy_to_master_param(p, block):
name
=
v
.
name
+
".master"
)
return
new_p
def
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
scale_loss
):
master_params_grads
=
[]
def
_update_role_var_grad
(
prog
,
params_grads
):
BACKWARD
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
gradname_to_paramname
=
dict
()
for
p
,
g
in
params_grads
:
gradname_to_paramname
[
g
.
name
]
=
p
.
name
for
op
in
prog
.
global_block
().
ops
:
role
=
op
.
attr
(
"op_role"
)
if
role
&
int
(
BACKWARD
)
and
op
.
has_attr
(
"op_role_var"
):
# have backward bits then remove all op_role_var
op
.
desc
.
remove_attr
(
"op_role_var"
)
for
op
in
prog
.
global_block
().
ops
:
if
op
.
type
==
"allreduce"
:
allreduce_role_var
=
[]
for
input_varname
in
op
.
input_arg_names
:
if
input_varname
in
gradname_to_paramname
:
allreduce_role_var
.
append
(
gradname_to_paramname
[
input_varname
])
allreduce_role_var
.
append
(
input_varname
)
print
(
"updating role var: "
,
allreduce_role_var
)
op
.
_set_attr
(
"op_role_var"
,
allreduce_role_var
)
def
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
scale_loss
,
reduce_master_grad
=
True
):
master_params_grads
=
[]
# master p, g on local device
params_grads_to_apply
=
[]
# master p, g after allreduced, if reduce_master_grad is enabled
tmp_role
=
main_prog
.
_current_role
OpRole
=
fluid
.
core
.
op_proto_and_checker_maker
.
OpRole
main_prog
.
_current_role
=
OpRole
.
Backward
...
...
@@ -62,12 +85,21 @@ def create_master_params_grads(params_grads, main_prog, startup_prog, scale_loss
scaled_g
=
g
master_params_grads
.
append
([
p
,
scaled_g
])
continue
master_grad
=
fluid
.
layers
.
cast
(
g
,
"float32"
)
if
scale_loss
>
1
:
master_grad
=
master_grad
/
float
(
scale_loss
)
master_params_grads
.
append
([
master_param
,
master_grad
])
master_params_grads
.
append
([
p
,
master_grad
])
if
reduce_master_grad
:
reduced_master_grad
=
fluid
.
layers
.
collective
.
_allreduce
(
master_grad
)
else
:
reduced_master_grad
=
master_grad
params_grads_to_apply
.
append
([
master_param
,
reduced_master_grad
])
# update program op role var acording to master grads before allreduce.
_update_role_var_grad
(
main_prog
,
master_params_grads
)
main_prog
.
_current_role
=
tmp_role
return
master_params_grads
return
params_grads_to_apply
def
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
):
for
idx
,
m_p_g
in
enumerate
(
master_params_grads
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录