Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
86fe83f2
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
86fe83f2
编写于
4月 04, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/models
into fix-transformer-batchsize-dev
上级
8ca89039
a4d00a37
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
33 addition
and
18 deletion
+33
-18
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+3
-0
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+4
-1
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+26
-17
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
86fe83f2
...
...
@@ -15,6 +15,9 @@ class TrainTaskConfig(object):
# the parameters for learning rate scheduling.
warmup_steps
=
4000
# the flag indicating to use average loss or sum loss when training.
use_avg_cost
=
False
# the directory for saving trained models.
model_dir
=
"trained_models"
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
86fe83f2
...
...
@@ -591,7 +591,10 @@ def transformer(
src_attn_shape_flag
=
False
)
cost
=
layers
.
softmax_with_cross_entropy
(
logits
=
predict
,
label
=
gold
)
weighted_cost
=
cost
*
weights
return
layers
.
reduce_sum
(
weighted_cost
),
predict
sum_cost
=
layers
.
reduce_sum
(
weighted_cost
)
token_num
=
layers
.
reduce_sum
(
weights
)
avg_cost
=
sum_cost
/
token_num
return
sum_cost
,
avg_cost
,
predict
def
wrap_encoder
(
src_vocab_size
,
...
...
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
86fe83f2
import
os
import
time
import
numpy
as
np
import
paddle
...
...
@@ -103,7 +104,7 @@ def main():
place
=
fluid
.
CUDAPlace
(
0
)
if
TrainTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
cost
,
predict
=
transformer
(
sum_cost
,
avg_
cost
,
predict
=
transformer
(
ModelHyperParams
.
src_vocab_size
+
1
,
ModelHyperParams
.
trg_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
...
...
@@ -120,7 +121,7 @@ def main():
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
optimizer
.
minimize
(
cost
)
optimizer
.
minimize
(
avg_cost
if
TrainTaskConfig
.
use_avg_cost
else
sum_
cost
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -132,29 +133,30 @@ def main():
# Program to do validation.
test_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
test_program
):
test_program
=
fluid
.
io
.
get_inference_program
([
cost
])
test_program
=
fluid
.
io
.
get_inference_program
([
avg_
cost
])
val_data
=
paddle
.
batch
(
paddle
.
dataset
.
wmt16
.
validation
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
TrainTaskConfig
.
batch_size
)
def
test
(
exe
):
test_costs
=
[]
test_sum_costs
=
[]
test_avg_costs
=
[]
for
batch_id
,
data
in
enumerate
(
val_data
()):
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
#
Since we use the sum cost, keep comparable cost by fixing the
#
batch size. Remove this if the cost is
mean.
#
Fix the batch size to keep comparable cost among all
#
mini-batches and compute the
mean.
continue
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
label_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
test_
cost
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
cost
])[
0
]
test_
costs
.
append
(
test
_cost
)
return
np
.
mean
(
test_costs
)
test_
sum_cost
,
test_avg_cost
=
exe
.
run
(
test_program
,
feed
=
data_input
,
fetch_list
=
[
sum_cost
,
avg_cost
])
test_sum_costs
.
append
(
test_sum_cost
)
test_
avg_costs
.
append
(
test_avg
_cost
)
return
np
.
mean
(
test_
sum_costs
),
np
.
mean
(
test_avg_
costs
)
# Initialize the parameters.
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
...
...
@@ -166,6 +168,7 @@ def main():
ModelHyperParams
.
d_model
),
place
)
for
pass_id
in
xrange
(
TrainTaskConfig
.
pass_num
):
pass_start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_data
()):
data_input
=
prepare_batch_input
(
data
,
encoder_input_data_names
+
decoder_input_data_names
[:
-
1
]
+
...
...
@@ -175,14 +178,20 @@ def main():
lr_scheduler
.
update_learning_rate
(
data_input
)
outs
=
exe
.
run
(
fluid
.
framework
.
default_main_program
(),
feed
=
data_input
,
fetch_list
=
[
cost
],
fetch_list
=
[
sum_cost
,
avg_
cost
],
use_program_cache
=
True
)
cost_val
=
np
.
array
(
outs
[
0
])
print
(
"pass_id = "
+
str
(
pass_id
)
+
" batch = "
+
str
(
batch_id
)
+
" cost = "
+
str
(
cost_val
))
sum_cost_val
,
avg_cost_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
print
(
"epoch: %d, batch: %d, sum loss: %f, avg loss: %f, ppl: %f"
%
(
pass_id
,
batch_id
,
sum_cost_val
,
avg_cost_val
,
np
.
exp
([
min
(
avg_cost_val
[
0
],
100
)])))
# Validate and save the model for inference.
val_cost
=
test
(
exe
)
print
(
"pass_id = "
+
str
(
pass_id
)
+
" val_cost = "
+
str
(
val_cost
))
val_sum_cost
,
val_avg_cost
=
test
(
exe
)
pass_end_time
=
time
.
time
()
time_consumed
=
pass_end_time
-
pass_start_time
print
(
"epoch: %d, val sum loss: %f, val avg loss: %f, val ppl: %f, "
"consumed %fs"
%
(
pass_id
,
val_sum_cost
,
val_avg_cost
,
np
.
exp
([
min
(
val_avg_cost
,
100
)]),
time_consumed
))
fluid
.
io
.
save_inference_model
(
os
.
path
.
join
(
TrainTaskConfig
.
model_dir
,
"pass_"
+
str
(
pass_id
)
+
".infer.model"
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录