提交 868ed52d 编写于 作者: Z zhengya01

add ctr ce

上级 fcf1677b
...@@ -4,8 +4,13 @@ export MKL_NUM_THREADS=1 ...@@ -4,8 +4,13 @@ export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1 export OMP_NUM_THREADS=1
cudaid=${face_detection:=0} # use 0-th card as default #cudaid=${face_detection:=0} # use 0-th card as default
export CUDA_VISIBLE_DEVICES=$cudaid #export CUDA_VISIBLE_DEVICES=$cudaid
export NUM_THREADS=1
FLAGS_benchmark=true python train.py --is_local 1 --cloud_train 0 --train_data_path data/raw/train.txt --enable_ce | python _ce.py
export NUM_THREADS=4
FLAGS_benchmark=true python train.py --is_local 1 --cloud_train 0 --train_data_path data/raw/train.txt --enable_ce | python _ce.py FLAGS_benchmark=true python train.py --is_local 1 --cloud_train 0 --train_data_path data/raw/train.txt --enable_ce | python _ce.py
...@@ -13,12 +13,20 @@ each_pass_duration_card1_kpi = DurationKpi('each_pass_duration_card1', 0.08, 0, ...@@ -13,12 +13,20 @@ each_pass_duration_card1_kpi = DurationKpi('each_pass_duration_card1', 0.08, 0,
train_loss_card1_kpi = CostKpi('train_loss_card1', 0.08, 0) train_loss_card1_kpi = CostKpi('train_loss_card1', 0.08, 0)
train_auc_val_card1_kpi = AccKpi('train_auc_val_card1', 0.08, 0) train_auc_val_card1_kpi = AccKpi('train_auc_val_card1', 0.08, 0)
train_batch_auc_val_card1_kpi = AccKpi('train_batch_auc_val_card1', 0.08, 0) train_batch_auc_val_card1_kpi = AccKpi('train_batch_auc_val_card1', 0.08, 0)
each_pass_duration_card4_kpi = DurationKpi('each_pass_duration_card4', 0.08, 0, actived=True)
train_loss_card4_kpi = CostKpi('train_loss_card4', 0.08, 0)
train_auc_val_card4_kpi = AccKpi('train_auc_val_card4', 0.08, 0)
train_batch_auc_val_card4_kpi = AccKpi('train_batch_auc_val_card4', 0.08, 0)
tracking_kpis = [ tracking_kpis = [
each_pass_duration_card1_kpi, each_pass_duration_card1_kpi,
train_loss_card1_kpi, train_loss_card1_kpi,
train_auc_val_card1_kpi, train_auc_val_card1_kpi,
train_batch_auc_val_card1_kpi train_batch_auc_val_card1_kpi,
each_pass_duration_card4_kpi,
train_loss_card4_kpi,
train_auc_val_card4_kpi,
train_batch_auc_val_card4_kpi
] ]
......
...@@ -112,10 +112,10 @@ def parse_args(): ...@@ -112,10 +112,10 @@ def parse_args():
action='store_true', action='store_true',
help='If set, run the task with continuous evaluation logs.') help='If set, run the task with continuous evaluation logs.')
parser.add_argument( parser.add_argument(
'--num_devices', '--num_threads',
type=int, type=int,
default=0, default=1,
help='The num of devices, (default: 1)') help='The num of threads, (default: 1)')
return parser.parse_args() return parser.parse_args()
...@@ -193,16 +193,17 @@ def train_loop(args, train_program, py_reader, loss, auc_var, batch_auc_var, ...@@ -193,16 +193,17 @@ def train_loop(args, train_program, py_reader, loss, auc_var, batch_auc_var,
# only for ce # only for ce
if args.enable_ce: if args.enable_ce:
gpu_num = get_cards(args) cpu_num = get_cards(args)
print("cpu_num", cpu_num)
epoch_idx = args.num_passes epoch_idx = args.num_passes
print("kpis\teach_pass_duration_card%s\t%s" % print("kpis\teach_pass_duration_card%s\t%s" %
(gpu_num, total_time / epoch_idx)) (cpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" % print("kpis\ttrain_loss_card%s\t%s" %
(gpu_num, loss_val/args.batch_size)) (cpu_num, loss_val/args.batch_size))
print("kpis\ttrain_auc_val_card%s\t%s" % print("kpis\ttrain_auc_val_card%s\t%s" %
(gpu_num, auc_val)) (cpu_num, auc_val))
print("kpis\ttrain_batch_auc_val_card%s\t%s" % print("kpis\ttrain_batch_auc_val_card%s\t%s" %
(gpu_num, batch_auc_val)) (cpu_num, batch_auc_val))
def train(): def train():
...@@ -257,11 +258,13 @@ def train(): ...@@ -257,11 +258,13 @@ def train():
def get_cards(args): def get_cards(args):
if args.enable_ce: if args.enable_ce:
cards = os.environ.get('CUDA_VISIBLE_DEVICES') cards = os.environ.get('NUM_THREADS', 1)
num = len(cards.split(",")) print("cards", cards)
return num
return int(cards)
else: else:
return args.num_devices print("return args.num_threads")
return args.num_threads
if __name__ == '__main__': if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册