未验证 提交 84b2855e 编写于 作者: W Wang Meng 提交者: GitHub

Merge pull request #577 from will-am/fluid_se_resnext

Add fluid version of SE-ResNeXt
import os
import random
import functools
import numpy as np
import paddle.v2 as paddle
from PIL import Image, ImageEnhance
random.seed(0)
_R_MEAN = 123.0
_G_MEAN = 117.0
_B_MEAN = 104.0
DATA_DIM = 224
THREAD = 8
BUF_SIZE = 1024
DATA_DIR = 'ILSVRC2012'
TRAIN_LIST = 'ILSVRC2012/train_list.txt'
TEST_LIST = 'ILSVRC2012/test_list.txt'
img_mean = np.array([_R_MEAN, _G_MEAN, _B_MEAN]).reshape((3, 1, 1))
def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
resized_height = int(round(img.size[1] * percent))
img = img.resize((resized_width, resized_height), Image.LANCZOS)
return img
def crop_image(img, target_size, center):
width, height = img.size
size = target_size
if center == True:
w_start = (width - size) / 2
h_start = (height - size) / 2
else:
w_start = random.randint(0, width - size)
h_start = random.randint(0, height - size)
w_end = w_start + size
h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end))
return img
def distort_color(img):
def random_brightness(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Brightness(img).enhance(e)
def random_contrast(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Contrast(img).enhance(e)
def random_color(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Color(img).enhance(e)
ops = [random_brightness, random_contrast, random_color]
random.shuffle(ops)
img = ops[0](img)
img = ops[1](img)
img = ops[2](img)
return img
def process_image(sample, mode):
img_path = sample[0]
img = Image.open(img_path)
if mode == 'train':
img = resize_short(img, DATA_DIM + 32)
else:
img = resize_short(img, DATA_DIM)
img = crop_image(img, target_size=DATA_DIM, center=(mode != 'train'))
if mode == 'train':
img = distort_color(img)
if random.randint(0, 1) == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if img.mode != 'RGB':
img = img.convert('RGB')
img = np.array(img).astype('float32').transpose((2, 0, 1))
img -= img_mean
if mode == 'train' or mode == 'test':
return img, sample[1]
elif mode == 'infer':
return img
def _reader_creator(file_list, mode, shuffle=False):
def reader():
with open(file_list) as flist:
lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(lines)
for line in lines:
if mode == 'train' or mode == 'test':
img_path, label = line.split()
img_path = os.path.join(DATA_DIR, img_path)
yield img_path, int(label)
elif mode == 'infer':
img_path = os.path.join(DATA_DIR, line)
yield [img_path]
mapper = functools.partial(process_image, mode=mode)
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
def train():
return _reader_creator(TRAIN_LIST, 'train', shuffle=True)
def test():
return _reader_creator(TEST_LIST, 'test', shuffle=False)
def infer(file_list):
return _reader_creator(file_list, 'infer', shuffle=False)
import os
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import reader
def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) / 2,
groups=groups,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(input=conv, act=act)
def squeeze_excitation(input, num_channels, reduction_ratio):
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
squeeze = fluid.layers.fc(
input=pool, size=num_channels / reduction_ratio, act='relu')
excitation = fluid.layers.fc(
input=squeeze, size=num_channels, act='sigmoid')
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
def shortcut(input, ch_out, stride):
ch_in = input.shape[1]
if ch_in != ch_out:
return conv_bn_layer(input, ch_out, 3, stride)
else:
return input
def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
conv0 = conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu')
conv1 = conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu')
conv2 = conv_bn_layer(
input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
scale = squeeze_excitation(
input=conv2,
num_channels=num_filters * 2,
reduction_ratio=reduction_ratio)
short = shortcut(input, num_filters * 2, stride)
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
def SE_ResNeXt(input, class_dim, infer=False):
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]
conv = conv_bn_layer(
input=input, num_filters=64, filter_size=3, stride=2, act='relu')
conv = conv_bn_layer(
input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
conv = conv_bn_layer(
input=conv, num_filters=128, filter_size=3, stride=1, act='relu')
conv = fluid.layers.pool2d(
input=conv, pool_size=3, pool_stride=2, pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
conv = bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio)
pool = fluid.layers.pool2d(
input=conv, pool_size=0, pool_type='avg', global_pooling=True)
if not infer:
drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
else:
drop = pool
out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
return out
def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
class_dim = 1000
image_shape = [3, 224, 224]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = SE_ResNeXt(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate / batch_size,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4 * batch_size))
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=out, label=label)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=out, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
train_reader = paddle.batch(datareader.train(), batch_size=batch_size)
test_reader = paddle.batch(datareader.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
for pass_id in range(num_passes):
accuracy.reset(exe)
for batch_id, data in enumerate(train_reader()):
loss, acc = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
print("Pass {0}, batch {1}, loss {2}, acc {3}".format(
pass_id, batch_id, loss[0], acc[0]))
pass_acc = accuracy.eval(exe)
test_accuracy.reset(exe)
for data in test_reader():
out, acc = exe.run(
inference_program,
feed=feeder.feed(data),
fetch_list=[avg_cost] + test_accuracy.metrics)
test_pass_acc = test_accuracy.eval(exe)
print("End pass {0}, train_acc {1}, test_acc {2}".format(
pass_id, pass_acc, test_pass_acc))
model_path = os.path.join(model_save_dir, str(pass_id))
fluid.io.save_inference_model(model_path, ['image'], [out], exe)
if __name__ == '__main__':
train(learning_rate=0.1, batch_size=7, num_passes=100)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册