Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
844afdf1
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
844afdf1
编写于
1月 09, 2020
作者:
Z
zhang wenhui
提交者:
GitHub
1月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gru4rec dypraph (#4179)
上级
94fc64bc
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
670 addition
and
0 deletion
+670
-0
PaddleRec/gru4rec/dy_graph/README.md
PaddleRec/gru4rec/dy_graph/README.md
+14
-0
PaddleRec/gru4rec/dy_graph/args.py
PaddleRec/gru4rec/dy_graph/args.py
+55
-0
PaddleRec/gru4rec/dy_graph/gru4rec_dy.py
PaddleRec/gru4rec/dy_graph/gru4rec_dy.py
+456
-0
PaddleRec/gru4rec/dy_graph/model_check.py
PaddleRec/gru4rec/dy_graph/model_check.py
+58
-0
PaddleRec/gru4rec/dy_graph/reader.py
PaddleRec/gru4rec/dy_graph/reader.py
+85
-0
PaddleRec/gru4rec/dy_graph/run_gru.sh
PaddleRec/gru4rec/dy_graph/run_gru.sh
+2
-0
未找到文件。
PaddleRec/gru4rec/dy_graph/README.md
浏览文件 @
844afdf1
# gru4rec 动态图实现
# gru4rec 动态图实现
# 下载数据
```
wget https://paddlerec.bj.bcebos.com/gru4rec/dy_graph/data_rsc15.tar
tar xvf data_rsc15.tar
```
# 训练及预测
```
CUDA_VISIBLE_DEVICES=0 nohup sh run_gru.sh > log 2>&1 &
```
每一轮训练完都会进行预测。
PaddleRec/gru4rec/dy_graph/args.py
0 → 100644
浏览文件 @
844afdf1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
distutils.util
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--model_type"
,
type
=
str
,
default
=
"small"
,
help
=
"model_type [test|small|medium|large]"
)
parser
.
add_argument
(
"--rnn_model"
,
type
=
str
,
default
=
"static"
,
help
=
"model_type [static|padding|cudnn]"
)
parser
.
add_argument
(
"--data_path"
,
type
=
str
,
help
=
"all the data for train,valid,test"
)
parser
.
add_argument
(
'--para_init'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
bool
,
default
=
False
,
help
=
'whether using gpu'
)
parser
.
add_argument
(
'--log_path'
,
help
=
'path of the log file. If not set, logs are printed to console'
)
parser
.
add_argument
(
'--save_model_dir'
,
type
=
str
,
default
=
"models"
,
help
=
'dir of the saved model.'
)
parser
.
add_argument
(
'--init_from_pretrain_model'
,
type
=
str
,
default
=
None
,
help
=
'dir to init model.'
)
parser
.
add_argument
(
'--ce'
,
action
=
'store_true'
,
help
=
"run ce"
)
args
=
parser
.
parse_args
()
return
args
PaddleRec/gru4rec/dy_graph/gru4rec_dy.py
0 → 100644
浏览文件 @
844afdf1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.dygraph.nn
import
Embedding
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.dygraph.base
import
to_variable
import
numpy
as
np
import
six
import
reader
import
model_check
import
time
from
args
import
*
import
sys
if
sys
.
version
[
0
]
==
'2'
:
reload
(
sys
)
sys
.
setdefaultencoding
(
"utf-8"
)
class
SimpleGRURNN
(
fluid
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleGRURNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_num_steps
=
num_steps
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
weight_3_arr
=
[]
self
.
bias_1_arr
=
[]
self
.
bias_2_arr
=
[]
self
.
mask_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
weight_1
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
2
,
self
.
_hidden_size
*
2
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_1_arr
.
append
(
self
.
add_parameter
(
'w_%d'
%
i
,
weight_1
))
weight_2
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
,
self
.
_hidden_size
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_2_arr
.
append
(
self
.
add_parameter
(
'w_%d'
%
i
,
weight_2
))
weight_3
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
,
self
.
_hidden_size
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_3_arr
.
append
(
self
.
add_parameter
(
'w_%d'
%
i
,
weight_3
))
bias_1
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
2
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_1_arr
.
append
(
self
.
add_parameter
(
'b_%d'
%
i
,
bias_1
))
bias_2
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
)),
shape
=
[
self
.
_hidden_size
*
1
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_2_arr
.
append
(
self
.
add_parameter
(
'b_%d'
%
i
,
bias_2
))
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
):
hidden_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
hidden_array
.
append
(
init_hidden
[
i
])
res
=
[]
for
index
in
range
(
self
.
_num_steps
):
step_input
=
input_embedding
[:,
index
,
:]
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
hidden_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
weight_2
=
self
.
weight_2_arr
[
k
]
weight_3
=
self
.
weight_3_arr
[
k
]
bias_1
=
self
.
bias_1_arr
[
k
]
bias_2
=
self
.
bias_2_arr
[
k
]
nn
=
fluid
.
layers
.
concat
([
step_input
,
pre_hidden
],
1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias_1
)
u
,
r
=
fluid
.
layers
.
split
(
gate_input
,
num_or_sections
=
2
,
dim
=-
1
)
hidden_c
=
fluid
.
layers
.
tanh
(
fluid
.
layers
.
elementwise_add
(
fluid
.
layers
.
matmul
(
x
=
step_input
,
y
=
weight_2
)
+
fluid
.
layers
.
matmul
(
x
=
(
fluid
.
layers
.
sigmoid
(
r
)
*
pre_hidden
),
y
=
weight_3
),
bias_2
))
hidden_state
=
fluid
.
layers
.
sigmoid
(
u
)
*
pre_hidden
+
(
1.0
-
fluid
.
layers
.
sigmoid
(
u
))
*
hidden_c
hidden_array
[
k
]
=
hidden_state
step_input
=
hidden_state
if
self
.
_dropout
is
not
None
and
self
.
_dropout
>
0.0
:
step_input
=
fluid
.
layers
.
dropout
(
step_input
,
dropout_prob
=
self
.
_dropout
,
dropout_implementation
=
'upscale_in_train'
)
res
.
append
(
step_input
)
real_res
=
fluid
.
layers
.
concat
(
res
,
1
)
real_res
=
fluid
.
layers
.
reshape
(
real_res
,
[
-
1
,
self
.
_num_steps
,
self
.
_hidden_size
])
last_hidden
=
fluid
.
layers
.
concat
(
hidden_array
,
1
)
last_hidden
=
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_hidden
=
fluid
.
layers
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
return
real_res
,
last_hidden
class
PtbModel
(
fluid
.
Layer
):
def
__init__
(
self
,
name_scope
,
hidden_size
,
vocab_size
,
num_layers
=
2
,
num_steps
=
20
,
init_scale
=
0.1
,
dropout
=
None
):
#super(PtbModel, self).__init__(name_scope)
super
(
PtbModel
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_gru_rnn
=
SimpleGRURNN
(
#self.full_name(),
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
dropout
=
dropout
)
self
.
embedding
=
Embedding
(
#self.full_name(),
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
is_sparse
=
False
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'embedding_para'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
init_scale
,
high
=
init_scale
)))
self
.
softmax_weight
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(),
shape
=
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
self
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(),
shape
=
[
self
.
vocab_size
],
dtype
=
"float32"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
build_once
(
self
,
input
,
label
,
init_hidden
):
pass
def
forward
(
self
,
input
,
label
,
init_hidden
):
init_h
=
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
x_emb
=
self
.
embedding
(
input
)
x_emb
=
fluid
.
layers
.
reshape
(
x_emb
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
x_emb
=
fluid
.
layers
.
dropout
(
x_emb
,
dropout_prob
=
self
.
dropout
,
dropout_implementation
=
'upscale_in_train'
)
rnn_out
,
last_hidden
=
self
.
simple_gru_rnn
(
x_emb
,
init_h
)
projection
=
fluid
.
layers
.
matmul
(
rnn_out
,
self
.
softmax_weight
)
projection
=
fluid
.
layers
.
elementwise_add
(
projection
,
self
.
softmax_bias
)
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
pre_2d
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
label_2d
=
fluid
.
layers
.
reshape
(
label
,
shape
=
[
-
1
,
1
])
acc
=
fluid
.
layers
.
accuracy
(
input
=
pre_2d
,
label
=
label_2d
,
k
=
20
)
loss
=
fluid
.
layers
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
fluid
.
layers
.
reduce_mean
(
loss
,
dim
=
[
0
])
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
return
loss
,
last_hidden
,
acc
def
debug_emb
(
self
):
np
.
save
(
"emb_grad"
,
self
.
x_emb
.
gradient
())
def
train_ptb_lm
():
args
=
parse_args
()
# check if set use_gpu=True in paddlepaddle cpu version
model_check
.
check_cuda
(
args
.
use_gpu
)
# check if paddlepaddle version is satisfied
model_check
.
check_version
()
model_type
=
args
.
model_type
vocab_size
=
37484
if
model_type
==
"test"
:
num_layers
=
1
batch_size
=
2
hidden_size
=
10
num_steps
=
4
init_scale
=
0.1
max_grad_norm
=
5.0
epoch_start_decay
=
1
max_epoch
=
1
dropout
=
0.0
lr_decay
=
0.5
base_learning_rate
=
1.0
elif
model_type
==
"small"
:
num_layers
=
2
batch_size
=
20
hidden_size
=
200
num_steps
=
20
init_scale
=
0.1
max_grad_norm
=
5.0
epoch_start_decay
=
4
max_epoch
=
2
dropout
=
0.0
lr_decay
=
0.5
base_learning_rate
=
1.0
elif
model_type
==
"gru4rec"
:
num_layers
=
1
batch_size
=
500
hidden_size
=
100
num_steps
=
10
init_scale
=
0.1
max_grad_norm
=
5.0
epoch_start_decay
=
10
max_epoch
=
3
dropout
=
0.0
lr_decay
=
0.5
base_learning_rate
=
1.0
elif
model_type
==
"medium"
:
num_layers
=
2
batch_size
=
20
hidden_size
=
650
num_steps
=
35
init_scale
=
0.05
max_grad_norm
=
5.0
epoch_start_decay
=
6
max_epoch
=
39
dropout
=
0.5
lr_decay
=
0.8
base_learning_rate
=
1.0
elif
model_type
==
"large"
:
num_layers
=
2
batch_size
=
20
hidden_size
=
1500
num_steps
=
35
init_scale
=
0.04
max_grad_norm
=
10.0
epoch_start_decay
=
14
max_epoch
=
55
dropout
=
0.65
lr_decay
=
1.0
/
1.15
base_learning_rate
=
1.0
else
:
print
(
"model type not support"
)
return
with
fluid
.
dygraph
.
guard
(
core
.
CUDAPlace
(
0
)):
if
args
.
ce
:
print
(
"ce mode"
)
seed
=
33
np
.
random
.
seed
(
seed
)
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
max_epoch
=
1
ptb_model
=
PtbModel
(
"ptb_model"
,
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
,
dropout
=
dropout
)
if
args
.
init_from_pretrain_model
:
if
not
os
.
path
.
exists
(
args
.
init_from_pretrain_model
+
'.pdparams'
):
print
(
args
.
init_from_pretrain_model
)
raise
Warning
(
"The pretrained params do not exist."
)
return
fluid
.
load_dygraph
(
args
.
init_from_pretrain_model
)
print
(
"finish initing model from pretrained params from %s"
%
(
args
.
init_from_pretrain_model
))
dy_param_updated
=
dict
()
dy_param_init
=
dict
()
dy_loss
=
None
last_hidden
=
None
data_path
=
args
.
data_path
print
(
"begin to load data"
)
ptb_data
=
reader
.
get_ptb_data
(
data_path
)
print
(
"finished load data"
)
train_data
,
valid_data
,
test_data
=
ptb_data
batch_len
=
len
(
train_data
)
//
batch_size
total_batch_size
=
(
batch_len
-
1
)
//
num_steps
print
(
"total_batch_size:"
,
total_batch_size
)
log_interval
=
total_batch_size
//
20
bd
=
[]
lr_arr
=
[
1.0
]
for
i
in
range
(
1
,
max_epoch
):
bd
.
append
(
total_batch_size
*
i
)
new_lr
=
base_learning_rate
*
(
lr_decay
**
max
(
i
+
1
-
epoch_start_decay
,
0.0
))
lr_arr
.
append
(
new_lr
)
sgd
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr_arr
))
def
eval
(
model
,
data
):
print
(
"begion to eval"
)
total_loss
=
0.0
iters
=
0.0
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
model
.
eval
()
train_data_iter
=
reader
.
get_data_iter
(
data
,
batch_size
,
num_steps
)
init_hidden
=
to_variable
(
init_hidden_data
)
accum_num_recall
=
0.0
for
batch_id
,
batch
in
enumerate
(
train_data_iter
):
x_data
,
y_data
=
batch
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
num_steps
,
1
))
x
=
to_variable
(
x_data
)
y
=
to_variable
(
y_data
)
dy_loss
,
last_hidden
,
acc
=
ptb_model
(
x
,
y
,
init_hidden
)
out_loss
=
dy_loss
.
numpy
()
acc_
=
acc
.
numpy
()[
0
]
accum_num_recall
+=
acc_
if
batch_id
%
1
==
0
:
print
(
"batch_id:%d recall@20:%.4f"
%
(
batch_id
,
accum_num_recall
/
(
batch_id
+
1
)))
init_hidden
=
last_hidden
total_loss
+=
out_loss
iters
+=
num_steps
print
(
"eval finished"
)
ppl
=
np
.
exp
(
total_loss
/
iters
)
print
(
"recall@20 "
,
accum_num_recall
/
(
batch_id
+
1
))
if
args
.
ce
:
print
(
"kpis
\t
test_ppl
\t
%0.3f"
%
ppl
[
0
])
grad_clip
=
fluid
.
dygraph_grad_clip
.
GradClipByGlobalNorm
(
max_grad_norm
)
for
epoch_id
in
range
(
max_epoch
):
ptb_model
.
train
()
total_loss
=
0.0
iters
=
0.0
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
train_data_iter
=
reader
.
get_data_iter
(
train_data
,
batch_size
,
num_steps
)
init_hidden
=
to_variable
(
init_hidden_data
)
start_time
=
time
.
time
()
for
batch_id
,
batch
in
enumerate
(
train_data_iter
):
x_data
,
y_data
=
batch
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
num_steps
,
1
))
x
=
to_variable
(
x_data
)
y
=
to_variable
(
y_data
)
dy_loss
,
last_hidden
,
acc
=
ptb_model
(
x
,
y
,
init_hidden
)
out_loss
=
dy_loss
.
numpy
()
acc_
=
acc
.
numpy
()[
0
]
init_hidden
=
last_hidden
dy_loss
.
backward
()
sgd
.
minimize
(
dy_loss
,
grad_clip
=
grad_clip
)
ptb_model
.
clear_gradients
()
total_loss
+=
out_loss
iters
+=
num_steps
if
batch_id
>
0
and
batch_id
%
100
==
1
:
ppl
=
np
.
exp
(
total_loss
/
iters
)
print
(
"-- Epoch:[%d]; Batch:[%d]; ppl: %.5f, acc: %.5f, lr: %.5f"
%
(
epoch_id
,
batch_id
,
ppl
[
0
],
acc_
,
sgd
.
_global_learning_rate
().
numpy
()))
print
(
"one ecpoh finished"
,
epoch_id
)
print
(
"time cost "
,
time
.
time
()
-
start_time
)
ppl
=
np
.
exp
(
total_loss
/
iters
)
print
(
"-- Epoch:[%d]; ppl: %.5f"
%
(
epoch_id
,
ppl
[
0
]))
if
args
.
ce
:
print
(
"kpis
\t
train_ppl
\t
%0.3f"
%
ppl
[
0
])
save_model_dir
=
os
.
path
.
join
(
args
.
save_model_dir
,
str
(
epoch_id
),
'params'
)
fluid
.
save_dygraph
(
ptb_model
.
state_dict
(),
save_model_dir
)
print
(
"Saved model to: %s.
\n
"
%
save_model_dir
)
eval
(
ptb_model
,
test_data
)
eval
(
ptb_model
,
test_data
)
train_ptb_lm
()
PaddleRec/gru4rec/dy_graph/model_check.py
0 → 100644
浏览文件 @
844afdf1
#encoding=utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
paddle
import
paddle.fluid
as
fluid
def
check_cuda
(
use_cuda
,
err
=
\
"
\n
You can not set use_cuda = True in the model because you are using paddlepaddle-cpu.
\n
\
Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_cuda = False to run models on CPU.
\n
"
):
"""
Log error and exit when set use_gpu=true in paddlepaddle
cpu version.
"""
try
:
if
use_cuda
==
True
and
fluid
.
is_compiled_with_cuda
()
==
False
:
print
(
err
)
sys
.
exit
(
1
)
except
Exception
as
e
:
pass
def
check_version
():
"""
Log error and exit when the installed version of paddlepaddle is
not satisfied.
"""
err
=
"PaddlePaddle version 1.6 or higher is required, "
\
"or a suitable develop version is satisfied as well.
\n
"
\
"Please make sure the version is good with your code."
\
try
:
fluid
.
require_version
(
'1.6.0'
)
except
Exception
as
e
:
print
(
err
)
sys
.
exit
(
1
)
if
__name__
==
"__main__"
:
check_cuda
(
True
)
check_cuda
(
False
)
check_cuda
(
True
,
"This is only for testing."
)
PaddleRec/gru4rec/dy_graph/reader.py
0 → 100644
浏览文件 @
844afdf1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
collections
import
os
import
sys
import
numpy
as
np
EOS
=
"</eos>"
def
build_vocab
(
filename
):
vocab_dict
=
{}
ids
=
0
vocab_dict
[
EOS
]
=
ids
ids
+=
1
with
open
(
filename
,
"r"
)
as
f
:
for
line
in
f
.
readlines
():
for
w
in
line
.
strip
().
split
():
if
w
not
in
vocab_dict
:
vocab_dict
[
w
]
=
ids
ids
+=
1
print
(
"vocab word num"
,
ids
)
return
vocab_dict
def
file_to_ids
(
src_file
,
src_vocab
):
src_data
=
[]
with
open
(
src_file
,
"r"
)
as
f_src
:
for
line
in
f_src
.
readlines
():
arra
=
line
.
strip
().
split
()
ids
=
[
src_vocab
[
w
]
for
w
in
arra
if
w
in
src_vocab
]
src_data
+=
ids
+
[
0
]
return
src_data
def
get_ptb_data
(
data_path
=
None
):
train_file
=
os
.
path
.
join
(
data_path
,
"ptb.train.txt"
)
valid_file
=
os
.
path
.
join
(
data_path
,
"ptb.valid.txt"
)
test_file
=
os
.
path
.
join
(
data_path
,
"ptb.test.txt"
)
vocab_dict
=
build_vocab
(
train_file
)
train_ids
=
file_to_ids
(
train_file
,
vocab_dict
)
valid_ids
=
file_to_ids
(
valid_file
,
vocab_dict
)
test_ids
=
file_to_ids
(
test_file
,
vocab_dict
)
return
train_ids
,
valid_ids
,
test_ids
def
get_data_iter
(
raw_data
,
batch_size
,
num_steps
):
data_len
=
len
(
raw_data
)
raw_data
=
np
.
asarray
(
raw_data
,
dtype
=
"int64"
)
batch_len
=
data_len
//
batch_size
data
=
raw_data
[
0
:
batch_size
*
batch_len
].
reshape
((
batch_size
,
batch_len
))
epoch_size
=
(
batch_len
-
1
)
//
num_steps
for
i
in
range
(
epoch_size
):
start
=
i
*
num_steps
x
=
np
.
copy
(
data
[:,
i
*
num_steps
:(
i
+
1
)
*
num_steps
])
y
=
np
.
copy
(
data
[:,
i
*
num_steps
+
1
:(
i
+
1
)
*
num_steps
+
1
])
yield
(
x
,
y
)
PaddleRec/gru4rec/dy_graph/run_gru.sh
0 → 100644
浏览文件 @
844afdf1
python
-u
gru4rec_dy.py
--data_path
data/
--model_type
gru4rec
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录