提交 7e00cc08 编写于 作者: Q qingqing01 提交者: whs

Fix non-pyreader traning and rm profile.py (#2721)

上级 d2d5ae74
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import time
import numpy as np
import argparse
from utility import parse_args, add_arguments, print_arguments
import paddle
import paddle.fluid as fluid
import reader
import paddle.fluid.profiler as profiler
import models.model_builder as model_builder
import models.resnet as resnet
from learning_rate import exponential_with_warmup_decay
from config import cfg
def train():
learning_rate = cfg.learning_rate
image_shape = [3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]
num_iterations = cfg.max_iter
devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(","))
total_batch_size = devices_num * cfg.TRAIN.im_per_batch
model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=cfg.use_pyreader,
use_random=False)
model.build_model(image_shape)
losses, keys = model.loss()
loss = losses[0]
fetch_list = [loss]
boundaries = cfg.lr_steps
gamma = cfg.lr_gamma
step_num = len(cfg.lr_steps)
values = [learning_rate * (gamma**i) for i in range(step_num + 1)]
optimizer = fluid.optimizer.Momentum(
learning_rate=exponential_with_warmup_decay(
learning_rate=learning_rate,
boundaries=boundaries,
values=values,
warmup_iter=500,
warmup_factor=1.0 / 3.0),
regularization=fluid.regularizer.L2Decay(0.0001),
momentum=0.9)
optimizer.minimize(loss)
fluid.memory_optimize(fluid.default_main_program())
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if cfg.pretrained_model:
def if_exist(var):
return os.path.exists(os.path.join(cfg.pretrained_model, var.name))
fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)
if cfg.parallel:
train_exe = fluid.ParallelExecutor(
use_cuda=bool(cfg.use_gpu), loss_name=loss.name)
if cfg.use_pyreader:
train_reader = reader.train(
batch_size=cfg.TRAIN.im_per_batch,
total_batch_size=total_batch_size,
padding_total=cfg.TRAIN.padding_minibatch,
shuffle=False)
py_reader = model.py_reader
py_reader.decorate_paddle_reader(train_reader)
else:
train_reader = reader.train(batch_size=total_batch_size, shuffle=False)
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
def run(iterations):
reader_time = []
run_time = []
total_images = 0
for batch_id in range(iterations):
start_time = time.time()
data = next(train_reader())
end_time = time.time()
reader_time.append(end_time - start_time)
start_time = time.time()
if cfg.parallel:
outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
else:
outs = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
end_time = time.time()
run_time.append(end_time - start_time)
total_images += len(data)
print("Batch {:d}, loss {:.6f} ".format(batch_id, np.mean(outs[0])))
return reader_time, run_time, total_images
def run_pyreader(iterations):
reader_time = [0]
run_time = []
total_images = 0
py_reader.start()
try:
for batch_id in range(iterations):
start_time = time.time()
if cfg.parallel:
outs = train_exe.run(
fetch_list=[v.name for v in fetch_list])
else:
outs = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list])
end_time = time.time()
run_time.append(end_time - start_time)
total_images += devices_num
print("Batch {:d}, loss {:.6f} ".format(batch_id,
np.mean(outs[0])))
except fluid.core.EOFException:
py_reader.reset()
return reader_time, run_time, total_images
run_func = run if not cfg.use_pyreader else run_pyreader
# warm-up
run_func(2)
# profiling
start = time.time()
if cfg.use_profile:
with profiler.profiler('GPU', 'total', '/tmp/profile_file'):
reader_time, run_time, total_images = run_func(num_iterations)
else:
reader_time, run_time, total_images = run_func(num_iterations)
end = time.time()
total_time = end - start
print("Total time: {0}, reader time: {1} s, run time: {2} s, images/s: {3}".
format(total_time,
np.sum(reader_time),
np.sum(run_time), total_images / total_time))
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
train()
...@@ -250,8 +250,6 @@ def train(): ...@@ -250,8 +250,6 @@ def train():
(gpu_num, total_time / epoch_idx)) (gpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss)) print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss))
return np.mean(every_pass_loss)
if cfg.use_pyreader: if cfg.use_pyreader:
train_loop_pyreader() train_loop_pyreader()
else: else:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册