Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
7b7385e3
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7b7385e3
编写于
1月 30, 2019
作者:
Z
zhengya01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ce
上级
e6ed31ef
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
139 addition
and
1 deletion
+139
-1
fluid/PaddleCV/video_classification/.run_ce.sh
fluid/PaddleCV/video_classification/.run_ce.sh
+25
-0
fluid/PaddleCV/video_classification/__init__.py
fluid/PaddleCV/video_classification/__init__.py
+0
-0
fluid/PaddleCV/video_classification/_ce.py
fluid/PaddleCV/video_classification/_ce.py
+66
-0
fluid/PaddleCV/video_classification/reader.py
fluid/PaddleCV/video_classification/reader.py
+13
-1
fluid/PaddleCV/video_classification/train.py
fluid/PaddleCV/video_classification/train.py
+35
-0
未找到文件。
fluid/PaddleCV/video_classification/.run_ce.sh
0 → 100755
浏览文件 @
7b7385e3
#!/bin/bash
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
cudaid
=
${
video_classification
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
export
FLAGS_fraction_of_gpu_memory_to_use
=
0.5
FLAGS_benchmark
=
true
python train.py
--batch_size
=
16
--total_videos
=
9537
--class_dim
=
101
--num_epochs
=
1
--image_shape
=
3,224,224
--model_save_dir
=
output/
--with_mem_opt
=
True
--lr_init
=
0.01
--num_layers
=
50
--seg_num
=
7
--enable_ce
=
True | python _ce.py
#export FLAGS_fraction_of_gpu_memory_to_use=0.92
cudaid
=
${
video_classification_4
:
=0,1,2,3
}
# use 0,1,2,3 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
--batch_size
=
16
--total_videos
=
9537
--class_dim
=
101
--num_epochs
=
1
--image_shape
=
3,224,224
--model_save_dir
=
output/
--with_mem_opt
=
True
--lr_init
=
0.01
--num_layers
=
50
--seg_num
=
7
--enable_ce
=
True | python _ce.py
exit
0
cudaid
=
${
video_classification_8
:
=0,1,2,3,4,5,6,7
}
# use 0,1,2,3,4,5,6,7 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py
--batch_size
=
16
--total_videos
=
9537
--class_dim
=
101
--num_epochs
=
1
--image_shape
=
3,224,224
--model_save_dir
=
output/
--with_mem_opt
=
True
--lr_init
=
0.01
--num_layers
=
50
--seg_num
=
7
--enable_ce
=
True | python _ce.py
fluid/PaddleCV/video_classification/__init__.py
0 → 100644
浏览文件 @
7b7385e3
fluid/PaddleCV/video_classification/_ce.py
0 → 100644
浏览文件 @
7b7385e3
# this file is only used for continuous evaluation test!
import
os
import
sys
os
.
environ
[
'ceroot'
]
=
"./"
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
each_pass_duration_card1_kpi
=
DurationKpi
(
'each_pass_duration_card1'
,
0.08
,
0
,
actived
=
True
)
train_loss_card1_kpi
=
CostKpi
(
'train_loss_card1'
,
0.08
,
0
)
each_pass_duration_card4_kpi
=
DurationKpi
(
'each_pass_duration_card4'
,
0.08
,
0
,
actived
=
True
)
train_loss_card4_kpi
=
CostKpi
(
'train_loss_card4'
,
0.08
,
0
)
each_pass_duration_card8_kpi
=
DurationKpi
(
'each_pass_duration_card8'
,
0.08
,
0
,
actived
=
True
)
train_loss_card8_kpi
=
CostKpi
(
'train_loss_card8'
,
0.08
,
0
)
tracking_kpis
=
[
each_pass_duration_card1_kpi
,
train_loss_card1_kpi
,
each_pass_duration_card4_kpi
,
train_loss_card4_kpi
,
each_pass_duration_card8_kpi
,
train_loss_card8_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
fluid/PaddleCV/video_classification/reader.py
浏览文件 @
7b7385e3
...
@@ -14,6 +14,7 @@ import paddle
...
@@ -14,6 +14,7 @@ import paddle
from
PIL
import
Image
,
ImageEnhance
from
PIL
import
Image
,
ImageEnhance
random
.
seed
(
0
)
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
THREAD
=
8
THREAD
=
8
BUF_SIZE
=
1024
BUF_SIZE
=
1024
...
@@ -27,6 +28,7 @@ img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
...
@@ -27,6 +28,7 @@ img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
python_ver
=
sys
.
version_info
python_ver
=
sys
.
version_info
def
imageloader
(
buf
):
def
imageloader
(
buf
):
if
isinstance
(
buf
,
str
):
if
isinstance
(
buf
,
str
):
img
=
Image
.
open
(
StringIO
(
buf
))
img
=
Image
.
open
(
StringIO
(
buf
))
...
@@ -149,7 +151,7 @@ def decode_pickle(sample, mode, seg_num, short_size, target_size):
...
@@ -149,7 +151,7 @@ def decode_pickle(sample, mode, seg_num, short_size, target_size):
imgs
-=
img_mean
imgs
-=
img_mean
imgs
/=
img_std
imgs
/=
img_std
if
mode
==
'train'
or
mode
==
'test'
:
if
mode
==
'train'
or
mode
==
'test'
or
mode
==
'train_ce'
:
return
imgs
,
label
return
imgs
,
label
elif
mode
==
'infer'
:
elif
mode
==
'infer'
:
return
imgs
,
vid
return
imgs
,
vid
...
@@ -208,3 +210,13 @@ def infer(seg_num):
...
@@ -208,3 +210,13 @@ def infer(seg_num):
seg_num
=
seg_num
,
seg_num
=
seg_num
,
short_size
=
256
,
short_size
=
256
,
target_size
=
224
)
target_size
=
224
)
def
train_ce
(
seg_num
):
return
_reader_creator
(
TRAIN_LIST
,
'train_ce'
,
shuffle
=
False
,
seg_num
=
seg_num
,
short_size
=
256
,
target_size
=
224
)
fluid/PaddleCV/video_classification/train.py
浏览文件 @
7b7385e3
...
@@ -26,6 +26,9 @@ add_arg('model_save_dir', str, "output", "Model save directory.")
...
@@ -26,6 +26,9 @@ add_arg('model_save_dir', str, "output", "Model save directory.")
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'total_videos'
,
int
,
9537
,
"Training video number."
)
add_arg
(
'total_videos'
,
int
,
9537
,
"Training video number."
)
add_arg
(
'lr_init'
,
float
,
0.01
,
"Set initial learning rate."
)
add_arg
(
'lr_init'
,
float
,
0.01
,
"Set initial learning rate."
)
add_arg
(
'enable_ce'
,
bool
,
False
,
"If set True, enable continuous evaluation job."
)
add_arg
(
'num_devices'
,
int
,
1
,
"Training video number."
)
add_arg
(
'num_batches'
,
int
,
100
,
"Training video number."
)
# yapf: enable
# yapf: enable
...
@@ -55,6 +58,11 @@ def train(args):
...
@@ -55,6 +58,11 @@ def train(args):
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
if
args
.
enable_ce
:
SEED
=
102
fluid
.
default_main_program
().
random_seed
=
SEED
fluid
.
default_startup_program
().
random_seed
=
SEED
# for test
# for test
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
...
@@ -92,6 +100,9 @@ def train(args):
...
@@ -92,6 +100,9 @@ def train(args):
# reader
# reader
train_reader
=
paddle
.
batch
(
reader
.
train
(
seg_num
),
batch_size
=
batch_size
,
drop_last
=
True
)
train_reader
=
paddle
.
batch
(
reader
.
train
(
seg_num
),
batch_size
=
batch_size
,
drop_last
=
True
)
if
args
.
enable_ce
:
train_reader
=
paddle
.
batch
(
reader
.
train_ce
(
seg_num
),
batch_size
=
batch_size
,
drop_last
=
False
)
# test in single GPU
# test in single GPU
test_reader
=
paddle
.
batch
(
reader
.
test
(
seg_num
),
batch_size
=
batch_size
/
16
)
test_reader
=
paddle
.
batch
(
reader
.
test
(
seg_num
),
batch_size
=
batch_size
/
16
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
...
@@ -100,15 +111,20 @@ def train(args):
...
@@ -100,15 +111,20 @@ def train(args):
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
]
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
]
total_time
=
0
# train
# train
for
pass_id
in
range
(
num_epochs
):
for
pass_id
in
range
(
num_epochs
):
train_info
=
[[],
[],
[]]
train_info
=
[[],
[],
[]]
test_info
=
[[],
[],
[]]
test_info
=
[[],
[],
[]]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
args
.
enable_ce
:
if
batch_id
>
args
.
num_batches
:
break
t1
=
time
.
time
()
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
train_exe
.
run
(
fetch_list
,
feed
=
feeder
.
feed
(
data
))
loss
,
acc1
,
acc5
=
train_exe
.
run
(
fetch_list
,
feed
=
feeder
.
feed
(
data
))
t2
=
time
.
time
()
t2
=
time
.
time
()
period
=
t2
-
t1
period
=
t2
-
t1
total_time
+=
period
loss
=
np
.
mean
(
np
.
array
(
loss
))
loss
=
np
.
mean
(
np
.
array
(
loss
))
acc1
=
np
.
mean
(
np
.
array
(
acc1
))
acc1
=
np
.
mean
(
np
.
array
(
acc1
))
acc5
=
np
.
mean
(
np
.
array
(
acc5
))
acc5
=
np
.
mean
(
np
.
array
(
acc5
))
...
@@ -130,6 +146,8 @@ def train(args):
...
@@ -130,6 +146,8 @@ def train(args):
# test
# test
cnt
=
0
cnt
=
0
for
batch_id
,
data
in
enumerate
(
test_reader
()):
for
batch_id
,
data
in
enumerate
(
test_reader
()):
if
args
.
enable_ce
and
batch_id
>
3
:
break
t1
=
time
.
time
()
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
exe
.
run
(
inference_program
,
loss
,
acc1
,
acc5
=
exe
.
run
(
inference_program
,
fetch_list
=
fetch_list
,
fetch_list
=
fetch_list
,
...
@@ -169,6 +187,23 @@ def train(args):
...
@@ -169,6 +187,23 @@ def train(args):
os
.
makedirs
(
model_path
)
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
if
args
.
enable_ce
:
gpu_num
=
get_cards
(
args
)
epoch_idx
=
num_epochs
print
(
"kpis
\t
each_pass_duration_card%s
\t
%s"
%
(
gpu_num
,
total_time
/
epoch_idx
))
print
(
"kpis
\t
train_loss_card%s
\t
%s"
%
(
gpu_num
,
train_loss
))
def
get_cards
(
args
):
if
args
.
enable_ce
:
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
return
num
else
:
return
args
.
num_devices
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录