Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
7ac5b3cd
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7ac5b3cd
编写于
6月 20, 2018
作者:
B
baiyf
提交者:
GitHub
6月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #986 from baiyfbupt/develop
Refine Pyramidbox infer and Pyramidbox configure
上级
486f84ff
d1e5d0e8
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
305 addition
and
83 deletion
+305
-83
fluid/face_detection/.gitignore
fluid/face_detection/.gitignore
+3
-1
fluid/face_detection/infer.py
fluid/face_detection/infer.py
+239
-43
fluid/face_detection/pyramidbox.py
fluid/face_detection/pyramidbox.py
+12
-3
fluid/face_detection/reader.py
fluid/face_detection/reader.py
+36
-28
fluid/face_detection/train.py
fluid/face_detection/train.py
+15
-8
未找到文件。
fluid/face_detection/.gitignore
浏览文件 @
7ac5b3cd
model/
pretrained/
data/
label/
pretrained/
*.swp
*.log
infer_results/
fluid/face_detection/infer.py
浏览文件 @
7ac5b3cd
...
...
@@ -11,7 +11,6 @@ import paddle.fluid as fluid
import
reader
from
pyramidbox
import
PyramidBox
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
...
...
@@ -20,73 +19,272 @@ add_arg('use_pyramidbox', bool, False, "Whether use PyramidBox model.")
add_arg
(
'confs_threshold'
,
float
,
0.25
,
"Confidence threshold to draw bbox."
)
add_arg
(
'image_path'
,
str
,
''
,
"The data root path."
)
add_arg
(
'model_dir'
,
str
,
''
,
"The model path."
)
add_arg
(
'resize_h'
,
int
,
0
,
"The resized image height."
)
add_arg
(
'resize_w'
,
int
,
0
,
"The resized image height."
)
# yapf: enable
def
draw_bounding_box_on_image
(
image_path
,
nms_out
,
confs_threshold
):
image
=
Image
.
open
(
image_path
)
draw
=
ImageDraw
.
Draw
(
image
)
im_width
,
im_height
=
image
.
size
for
dt
in
nms_out
:
category_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
xmin
,
ymin
,
xmax
,
ymax
,
score
=
dt
if
score
<
confs_threshold
:
continue
bbox
=
dt
[
2
:]
xmin
,
ymin
,
xmax
,
ymax
=
bbox
(
left
,
right
,
top
,
bottom
)
=
(
xmin
*
im_width
,
xmax
*
im_width
,
ymin
*
im_height
,
ymax
*
im_height
)
(
left
,
right
,
top
,
bottom
)
=
(
xmin
,
xmax
,
ymin
,
ymax
)
draw
.
line
(
[(
left
,
top
),
(
left
,
bottom
),
(
right
,
bottom
),
(
right
,
top
),
(
left
,
top
)],
width
=
4
,
fill
=
'red'
)
image_name
=
image_path
.
split
(
'/'
)[
-
1
]
image_class
=
image_path
.
split
(
'/'
)[
-
2
]
print
(
"image with bbox drawed saved as {}"
.
format
(
image_name
))
image
.
save
(
image_name
)
image
.
save
(
'./infer_results/'
+
image_class
.
encode
(
'utf-8'
)
+
'/'
+
image_name
.
encode
(
'utf-8'
))
def
infer
(
args
,
data_args
):
num_classes
=
2
infer_reader
=
reader
.
infer
(
data_args
,
args
.
image_path
)
data
=
infer_reader
()
def
write_to_txt
(
image_path
,
f
,
nms_out
):
image_name
=
image_path
.
split
(
'/'
)[
-
1
]
image_class
=
image_path
.
split
(
'/'
)[
-
2
]
f
.
write
(
'{:s}
\n
'
.
format
(
image_class
.
encode
(
'utf-8'
)
+
'/'
+
image_name
.
encode
(
'utf-8'
)))
f
.
write
(
'{:d}
\n
'
.
format
(
nms_out
.
shape
[
0
]))
for
dt
in
nms_out
:
xmin
,
ymin
,
xmax
,
ymax
,
score
=
dt
f
.
write
(
'{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}
\n
'
.
format
(
xmin
,
ymin
,
(
xmax
-
xmin
+
1
),
(
ymax
-
ymin
+
1
),
score
))
print
(
"image infer result saved {}"
.
format
(
image_name
[:
-
4
]))
if
args
.
resize_h
and
args
.
resize_w
:
image_shape
=
[
3
,
args
.
resize_h
,
args
.
resize_w
]
else
:
image_shape
=
data
.
shape
[
1
:]
fetches
=
[]
def
get_round
(
x
,
loc
):
str_x
=
str
(
x
)
if
'.'
in
str_x
:
len_after
=
len
(
str_x
.
split
(
'.'
)[
1
])
str_before
=
str_x
.
split
(
'.'
)[
0
]
str_after
=
str_x
.
split
(
'.'
)[
1
]
if
len_after
>=
3
:
str_final
=
str_before
+
'.'
+
str_after
[
0
:
loc
]
return
float
(
str_final
)
else
:
return
x
def
bbox_vote
(
det
):
order
=
det
[:,
4
].
ravel
().
argsort
()[::
-
1
]
det
=
det
[
order
,
:]
if
det
.
shape
[
0
]
==
0
:
dets
=
np
.
array
([[
10
,
10
,
20
,
20
,
0.002
]])
det
=
np
.
empty
(
shape
=
[
0
,
5
])
while
det
.
shape
[
0
]
>
0
:
# IOU
area
=
(
det
[:,
2
]
-
det
[:,
0
]
+
1
)
*
(
det
[:,
3
]
-
det
[:,
1
]
+
1
)
xx1
=
np
.
maximum
(
det
[
0
,
0
],
det
[:,
0
])
yy1
=
np
.
maximum
(
det
[
0
,
1
],
det
[:,
1
])
xx2
=
np
.
minimum
(
det
[
0
,
2
],
det
[:,
2
])
yy2
=
np
.
minimum
(
det
[
0
,
3
],
det
[:,
3
])
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
1
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
1
)
inter
=
w
*
h
o
=
inter
/
(
area
[
0
]
+
area
[:]
-
inter
)
# get needed merge det and delete these det
merge_index
=
np
.
where
(
o
>=
0.3
)[
0
]
det_accu
=
det
[
merge_index
,
:]
det
=
np
.
delete
(
det
,
merge_index
,
0
)
if
merge_index
.
shape
[
0
]
<=
1
:
if
det
.
shape
[
0
]
==
0
:
try
:
dets
=
np
.
row_stack
((
dets
,
det_accu
))
except
:
dets
=
det_accu
continue
det_accu
[:,
0
:
4
]
=
det_accu
[:,
0
:
4
]
*
np
.
tile
(
det_accu
[:,
-
1
:],
(
1
,
4
))
max_score
=
np
.
max
(
det_accu
[:,
4
])
det_accu_sum
=
np
.
zeros
((
1
,
5
))
det_accu_sum
[:,
0
:
4
]
=
np
.
sum
(
det_accu
[:,
0
:
4
],
axis
=
0
)
/
np
.
sum
(
det_accu
[:,
-
1
:])
det_accu_sum
[:,
4
]
=
max_score
try
:
dets
=
np
.
row_stack
((
dets
,
det_accu_sum
))
except
:
dets
=
det_accu_sum
dets
=
dets
[
0
:
750
,
:]
return
dets
def
image_preprocess
(
image
):
img
=
np
.
array
(
image
)
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
np
.
array
(
[
104.
,
117.
,
123.
])[:,
np
.
newaxis
,
np
.
newaxis
].
astype
(
'float32'
)
img
=
img
*
0.007843
img
=
[
img
]
img
=
np
.
array
(
img
)
return
img
network
=
PyramidBox
(
image_shape
,
num_classes
,
sub_network
=
args
.
use_pyramidbox
,
is_infer
=
True
)
infer_program
,
nmsed_out
=
network
.
infer
()
fetches
=
[
nmsed_out
]
def
detect_face
(
image
,
shrink
):
image_shape
=
[
3
,
image
.
size
[
1
],
image
.
size
[
0
]]
num_classes
=
2
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
model_dir
=
args
.
model_dir
if
not
os
.
path
.
exists
(
model_dir
):
raise
ValueError
(
"The model path [%s] does not exist."
%
(
model_dir
))
if
shrink
!=
1
:
image
=
image
.
resize
((
int
(
image_shape
[
2
]
*
shrink
),
int
(
image_shape
[
1
]
*
shrink
)),
Image
.
ANTIALIAS
)
image_shape
=
[
image_shape
[
0
],
int
(
image_shape
[
1
]
*
shrink
),
int
(
image_shape
[
2
]
*
shrink
)
]
print
"image_shape:"
,
image_shape
img
=
image_preprocess
(
image
)
scope
=
fluid
.
core
.
Scope
()
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main_program
,
startup_program
):
fetches
=
[]
network
=
PyramidBox
(
image_shape
,
num_classes
,
sub_network
=
args
.
use_pyramidbox
,
is_infer
=
True
)
infer_program
,
nmsed_out
=
network
.
infer
(
main_program
)
fetches
=
[
nmsed_out
]
fluid
.
io
.
load_persistables
(
exe
,
args
.
model_dir
,
main_program
=
main_program
)
detection
,
=
exe
.
run
(
infer_program
,
feed
=
{
'image'
:
img
},
fetch_list
=
fetches
,
return_numpy
=
False
)
detection
=
np
.
array
(
detection
)
# layout: xmin, ymin, xmax. ymax, score
det_conf
=
detection
[:,
1
]
det_xmin
=
image_shape
[
2
]
*
detection
[:,
2
]
/
shrink
det_ymin
=
image_shape
[
1
]
*
detection
[:,
3
]
/
shrink
det_xmax
=
image_shape
[
2
]
*
detection
[:,
4
]
/
shrink
det_ymax
=
image_shape
[
1
]
*
detection
[:,
5
]
/
shrink
det
=
np
.
column_stack
((
det_xmin
,
det_ymin
,
det_xmax
,
det_ymax
,
det_conf
))
keep_index
=
np
.
where
(
det
[:,
4
]
>=
0
)[
0
]
det
=
det
[
keep_index
,
:]
return
det
def
flip_test
(
image
,
shrink
):
img
=
image
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
det_f
=
detect_face
(
img
,
shrink
)
det_t
=
np
.
zeros
(
det_f
.
shape
)
# image.size: [width, height]
det_t
[:,
0
]
=
image
.
size
[
0
]
-
det_f
[:,
2
]
det_t
[:,
1
]
=
det_f
[:,
1
]
det_t
[:,
2
]
=
image
.
size
[
0
]
-
det_f
[:,
0
]
det_t
[:,
3
]
=
det_f
[:,
3
]
det_t
[:,
4
]
=
det_f
[:,
4
]
return
det_t
def
multi_scale_test
(
image
,
max_shrink
):
# shrink detecting and shrink only detect big face
st
=
0.5
if
max_shrink
>=
0.75
else
0.5
*
max_shrink
det_s
=
detect_face
(
image
,
st
)
index
=
np
.
where
(
np
.
maximum
(
det_s
[:,
2
]
-
det_s
[:,
0
]
+
1
,
det_s
[:,
3
]
-
det_s
[:,
1
]
+
1
)
>
30
)[
0
]
det_s
=
det_s
[
index
,
:]
# enlarge one times
bt
=
min
(
2
,
max_shrink
)
if
max_shrink
>
1
else
(
st
+
max_shrink
)
/
2
det_b
=
detect_face
(
image
,
bt
)
# enlarge small image x times for small face
if
max_shrink
>
2
:
bt
*=
2
while
bt
<
max_shrink
:
det_b
=
np
.
row_stack
((
det_b
,
detect_face
(
image
,
bt
)))
bt
*=
2
det_b
=
np
.
row_stack
((
det_b
,
detect_face
(
image
,
max_shrink
)))
# enlarge only detect small face
if
bt
>
1
:
index
=
np
.
where
(
np
.
minimum
(
det_b
[:,
2
]
-
det_b
[:,
0
]
+
1
,
det_b
[:,
3
]
-
det_b
[:,
1
]
+
1
)
<
100
)[
0
]
det_b
=
det_b
[
index
,
:]
else
:
index
=
np
.
where
(
np
.
maximum
(
det_b
[:,
2
]
-
det_b
[:,
0
]
+
1
,
det_b
[:,
3
]
-
det_b
[:,
1
]
+
1
)
>
30
)[
0
]
det_b
=
det_b
[
index
,
:]
return
det_s
,
det_b
def
get_im_shrink
(
image_shape
):
max_shrink_v1
=
(
0x7fffffff
/
577.0
/
(
image_shape
[
1
]
*
image_shape
[
2
]))
**
0.5
max_shrink_v2
=
(
(
678
*
1024
*
2.0
*
2.0
)
/
(
image_shape
[
1
]
*
image_shape
[
2
]))
**
0.5
max_shrink
=
get_round
(
min
(
max_shrink_v1
,
max_shrink_v2
),
2
)
-
0.3
if
max_shrink
>=
1.5
and
max_shrink
<
2
:
max_shrink
=
max_shrink
-
0.1
elif
max_shrink
>=
2
and
max_shrink
<
3
:
max_shrink
=
max_shrink
-
0.2
elif
max_shrink
>=
3
and
max_shrink
<
4
:
max_shrink
=
max_shrink
-
0.3
elif
max_shrink
>=
4
and
max_shrink
<
5
:
max_shrink
=
max_shrink
-
0.4
elif
max_shrink
>=
5
:
max_shrink
=
max_shrink
-
0.5
print
'max_shrink = '
,
max_shrink
shrink
=
max_shrink
if
max_shrink
<
1
else
1
print
"shrink = "
,
shrink
return
shrink
,
max_shrink
def
infer
(
args
,
batch_size
,
data_args
):
if
not
os
.
path
.
exists
(
args
.
model_dir
):
raise
ValueError
(
"The model path [%s] does not exist."
%
(
args
.
model_dir
))
infer_reader
=
paddle
.
batch
(
reader
.
test
(
data_args
,
file_list
),
batch_size
=
batch_size
)
for
batch_id
,
img
in
enumerate
(
infer_reader
()):
image
=
img
[
0
][
0
]
image_path
=
img
[
0
][
1
]
# image.size: [width, height]
image_shape
=
[
3
,
image
.
size
[
1
],
image
.
size
[
0
]]
shrink
,
max_shrink
=
get_im_shrink
(
image_shape
)
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
model_dir
,
var
.
name
))
det0
=
detect_face
(
image
,
shrink
)
det1
=
flip_test
(
image
,
shrink
)
[
det2
,
det3
]
=
multi_scale_test
(
image
,
max_shrink
)
det
=
np
.
row_stack
((
det0
,
det1
,
det2
,
det3
))
dets
=
bbox_vote
(
det
)
fluid
.
io
.
load_vars
(
exe
,
model_dir
,
predicate
=
if_exist
)
image_name
=
image_path
.
split
(
'/'
)[
-
1
]
image_class
=
image_path
.
split
(
'/'
)[
-
2
]
if
not
os
.
path
.
exists
(
'./infer_results/'
+
image_class
.
encode
(
'utf-8'
)):
os
.
makedirs
(
'./infer_results/'
+
image_class
.
encode
(
'utf-8'
))
feed
=
{
'image'
:
fluid
.
create_lod_tensor
(
data
,
[],
place
)}
predict
,
=
exe
.
run
(
infer_program
,
feed
=
feed
,
fetch_list
=
fetches
,
return_numpy
=
False
)
predict
=
np
.
array
(
predict
)
draw_bounding_box_on_image
(
args
.
image_path
,
predict
,
args
.
confs_threshold
)
f
=
open
(
'./infer_results/'
+
image_class
.
encode
(
'utf-8'
)
+
'/'
+
image_name
.
encode
(
'utf-8'
)[:
-
4
]
+
'.txt'
,
'w'
)
write_to_txt
(
image_path
,
f
,
dets
)
# draw_bounding_box_on_image(image_path, dets, args.confs_threshold)
print
"Done"
if
__name__
==
'__main__'
:
...
...
@@ -98,10 +296,8 @@ if __name__ == '__main__':
data_args
=
reader
.
Settings
(
data_dir
=
data_dir
,
resize_h
=
args
.
resize_h
,
resize_w
=
args
.
resize_w
,
mean_value
=
[
104.
,
117.
,
123
],
apply_distort
=
False
,
apply_expand
=
False
,
ap_version
=
'11point'
)
infer
(
args
,
data_args
=
data_args
)
infer
(
args
,
batch_size
=
1
,
data_args
=
data_args
)
fluid/face_detection/pyramidbox.py
浏览文件 @
7ac5b3cd
...
...
@@ -39,7 +39,11 @@ def conv_block(input, groups, filters, ksizes, strides=None, with_pool=True):
act
=
'relu'
)
if
with_pool
:
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
)
input
=
conv
,
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
,
ceil_mode
=
True
)
return
conv
,
pool
else
:
return
conv
...
...
@@ -148,6 +152,8 @@ class PyramidBox(object):
b_attr
=
ParamAttr
(
learning_rate
=
2.
,
regularizer
=
L2Decay
(
0.
))
conv2
=
fluid
.
layers
.
conv2d
(
up_to
,
ch
,
1
,
act
=
'relu'
,
bias_attr
=
b_attr
)
if
self
.
is_infer
:
upsampling
=
fluid
.
layers
.
crop
(
upsampling
,
shape
=
conv2
)
# eltwise mul
conv_fuse
=
upsampling
*
conv2
return
conv_fuse
...
...
@@ -393,8 +399,11 @@ class PyramidBox(object):
total_loss
=
face_loss
+
head_loss
return
face_loss
,
head_loss
,
total_loss
def
infer
(
self
):
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
def
infer
(
self
,
main_program
=
None
):
if
main_program
is
None
:
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
else
:
test_program
=
main_program
.
clone
(
for_test
=
True
)
with
fluid
.
program_guard
(
test_program
):
face_nmsed_out
=
fluid
.
layers
.
detection_output
(
self
.
face_mbox_loc
,
...
...
fluid/face_detection/reader.py
浏览文件 @
7ac5b3cd
...
...
@@ -238,34 +238,38 @@ def pyramidbox(settings, file_list, mode, shuffle):
im_width
,
im_height
=
im
.
size
# layout: label | xmin | ymin | xmax | ymax
bbox_labels
=
[]
for
index_box
in
range
(
len
(
dict_input_txt
[
index_image
])):
if
index_box
>=
2
:
bbox_sample
=
[]
temp_info_box
=
dict_input_txt
[
index_image
][
index_box
].
split
(
' '
)
xmin
=
float
(
temp_info_box
[
0
])
ymin
=
float
(
temp_info_box
[
1
])
w
=
float
(
temp_info_box
[
2
])
h
=
float
(
temp_info_box
[
3
])
xmax
=
xmin
+
w
ymax
=
ymin
+
h
bbox_sample
.
append
(
1
)
bbox_sample
.
append
(
float
(
xmin
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymin
)
/
im_height
)
bbox_sample
.
append
(
float
(
xmax
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymax
)
/
im_height
)
bbox_labels
.
append
(
bbox_sample
)
im
,
sample_labels
=
preprocess
(
im
,
bbox_labels
,
mode
,
settings
)
sample_labels
=
np
.
array
(
sample_labels
)
if
len
(
sample_labels
)
==
0
:
continue
im
=
im
.
astype
(
'float32'
)
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
[
1
]
*
len
(
boxes
)
difficults
=
[
1
]
*
len
(
boxes
)
yield
im
,
boxes
,
expand_bboxes
(
boxes
),
lbls
,
difficults
if
mode
==
'train'
:
bbox_labels
=
[]
for
index_box
in
range
(
len
(
dict_input_txt
[
index_image
])):
if
index_box
>=
2
:
bbox_sample
=
[]
temp_info_box
=
dict_input_txt
[
index_image
][
index_box
].
split
(
' '
)
xmin
=
float
(
temp_info_box
[
0
])
ymin
=
float
(
temp_info_box
[
1
])
w
=
float
(
temp_info_box
[
2
])
h
=
float
(
temp_info_box
[
3
])
xmax
=
xmin
+
w
ymax
=
ymin
+
h
bbox_sample
.
append
(
1
)
bbox_sample
.
append
(
float
(
xmin
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymin
)
/
im_height
)
bbox_sample
.
append
(
float
(
xmax
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymax
)
/
im_height
)
bbox_labels
.
append
(
bbox_sample
)
im
,
sample_labels
=
preprocess
(
im
,
bbox_labels
,
mode
,
settings
)
sample_labels
=
np
.
array
(
sample_labels
)
if
len
(
sample_labels
)
==
0
:
continue
im
=
im
.
astype
(
'float32'
)
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
[
1
]
*
len
(
boxes
)
difficults
=
[
1
]
*
len
(
boxes
)
yield
im
,
boxes
,
expand_bboxes
(
boxes
),
lbls
,
difficults
if
mode
==
'test'
:
yield
im
,
image_path
return
reader
...
...
@@ -274,6 +278,10 @@ def train(settings, file_list, shuffle=True):
return
pyramidbox
(
settings
,
file_list
,
'train'
,
shuffle
)
def
test
(
settings
,
file_list
):
return
pyramidbox
(
settings
,
file_list
,
'test'
,
False
)
def
infer
(
settings
,
image_path
):
def
batch_reader
():
img
=
Image
.
open
(
image_path
)
...
...
fluid/face_detection/train.py
浏览文件 @
7ac5b3cd
...
...
@@ -16,11 +16,11 @@ add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg
(
'parallel'
,
bool
,
True
,
"parallel"
)
add_arg
(
'learning_rate'
,
float
,
0.00
0
1
,
"Learning rate."
)
add_arg
(
'batch_size'
,
int
,
1
6
,
"Minibatch size."
)
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'batch_size'
,
int
,
1
2
,
"Minibatch size."
)
add_arg
(
'num_passes'
,
int
,
120
,
"Epoch number."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU."
)
add_arg
(
'use_pyramidbox'
,
bool
,
Fals
e
,
"Whether use PyramidBox model."
)
add_arg
(
'use_pyramidbox'
,
bool
,
Tru
e
,
"Whether use PyramidBox model."
)
add_arg
(
'dataset'
,
str
,
'WIDERFACE'
,
"coco2014, coco2017, and pascalvoc."
)
add_arg
(
'model_save_dir'
,
str
,
'model'
,
"The path to save model."
)
add_arg
(
'pretrained_model'
,
str
,
'./pretrained/'
,
"The init model path."
)
...
...
@@ -50,10 +50,10 @@ def train(args, data_args, learning_rate, batch_size, pretrained_model,
fetches
=
[
loss
]
epocs
=
12880
/
batch_size
boundaries
=
[
epocs
*
100
,
epocs
*
125
,
epocs
*
15
0
]
boundaries
=
[
epocs
*
40
,
epocs
*
60
,
epocs
*
80
,
epocs
*
10
0
]
values
=
[
learning_rate
,
learning_rate
*
0.
1
,
learning_rate
*
0.01
,
learning_rate
*
0.
0
01
learning_rate
,
learning_rate
*
0.
5
,
learning_rate
*
0.25
,
learning_rate
*
0.
1
,
learning_rate
*
0.
01
]
if
optimizer_method
==
"momentum"
:
...
...
@@ -70,12 +70,19 @@ def train(args, data_args, learning_rate, batch_size, pretrained_model,
)
optimizer
.
minimize
(
loss
)
# fluid.memory_optimize(fluid.default_main_program())
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
start_pass
=
0
if
pretrained_model
:
if
pretrained_model
.
isdigit
():
start_pass
=
int
(
pretrained_model
)
+
1
pretrained_model
=
os
.
path
.
join
(
args
.
model_save_dir
,
pretrained_model
)
print
(
"Resume from %s "
%
(
pretrained_model
))
if
not
os
.
path
.
exists
(
pretrained_model
):
raise
ValueError
(
"The pre-trained model path [%s] does not exist."
%
(
pretrained_model
))
...
...
@@ -98,14 +105,14 @@ def train(args, data_args, learning_rate, batch_size, pretrained_model,
print
'save models to %s'
%
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
for
pass_id
in
range
(
num_passes
):
for
pass_id
in
range
(
start_pass
,
num_passes
):
start_time
=
time
.
time
()
prev_start_time
=
start_time
end_time
=
0
for
batch_id
,
data
in
enumerate
(
train_reader
()):
prev_start_time
=
start_time
start_time
=
time
.
time
()
if
len
(
data
)
<
devices_num
:
continue
if
len
(
data
)
<
2
*
devices_num
:
continue
if
args
.
parallel
:
fetch_vars
=
train_exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetches
],
feed
=
feeder
.
feed
(
data
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录