Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
7a0013c5
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
7a0013c5
编写于
1月 31, 2018
作者:
wgzqz
提交者:
GitHub
1月 31, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #602 from guangzhuwu/develop
Add deepfool.
上级
8e876f9e
eaf2d555
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
140 addition
and
42 deletion
+140
-42
fluid/adversarial/advbox/adversary.py
fluid/adversarial/advbox/adversary.py
+5
-3
fluid/adversarial/advbox/attacks/__init__.py
fluid/adversarial/advbox/attacks/__init__.py
+1
-0
fluid/adversarial/advbox/attacks/base.py
fluid/adversarial/advbox/attacks/base.py
+3
-2
fluid/adversarial/advbox/attacks/deepfool.py
fluid/adversarial/advbox/attacks/deepfool.py
+79
-0
fluid/adversarial/advbox/attacks/gradientsign.py
fluid/adversarial/advbox/attacks/gradientsign.py
+6
-7
fluid/adversarial/advbox/attacks/iterator_gradientsign.py
fluid/adversarial/advbox/attacks/iterator_gradientsign.py
+6
-8
fluid/adversarial/advbox/models/base.py
fluid/adversarial/advbox/models/base.py
+15
-8
fluid/adversarial/advbox/models/paddle.py
fluid/adversarial/advbox/models/paddle.py
+25
-14
未找到文件。
fluid/adversarial/advbox/adversary.py
浏览文件 @
7a0013c5
...
...
@@ -61,7 +61,7 @@ class Adversary(object):
def
_is_successful
(
self
,
adversarial_label
):
"""
Is the adversarial_label is the expected adversarial label.
:param adversarial_label: adversarial label.
:return: bool
"""
...
...
@@ -87,10 +87,12 @@ class Adversary(object):
:return: bool
"""
assert
adversarial_example
is
not
None
assert
self
.
__original
.
shape
==
adversarial_example
.
shape
ok
=
self
.
_is_successful
(
adversarial_label
)
if
ok
:
self
.
__adversarial_example
=
adversarial_example
.
reshape
(
self
.
__original
.
shape
)
self
.
__adversarial_example
=
adversarial_example
self
.
__adversarial_label
=
adversarial_label
return
ok
...
...
fluid/adversarial/advbox/attacks/__init__.py
浏览文件 @
7a0013c5
...
...
@@ -3,6 +3,7 @@ Attack methods
"""
from
.base
import
Attack
from
.deepfool
import
DeepFoolAttack
from
.gradientsign
import
FGSM
from
.gradientsign
import
GradientSignAttack
from
.iterator_gradientsign
import
IFGSM
...
...
fluid/adversarial/advbox/attacks/base.py
浏览文件 @
7a0013c5
...
...
@@ -54,7 +54,7 @@ class Attack(object):
"""
if
adversary
.
original_label
is
None
:
adversary
.
original_label
=
np
.
argmax
(
self
.
model
.
predict
(
[(
adversary
.
original
,
0
)]
))
self
.
model
.
predict
(
adversary
.
original
))
if
adversary
.
is_targeted_attack
and
adversary
.
target_label
is
None
:
if
adversary
.
target
is
None
:
raise
ValueError
(
...
...
@@ -62,7 +62,8 @@ class Attack(object):
'adversary.target_label or adversary.target must be set.'
)
else
:
adversary
.
target_label_label
=
np
.
argmax
(
self
.
model
.
predict
([(
adversary
.
target_label
,
0
)]))
self
.
model
.
predict
(
self
.
model
.
scale_input
(
adversary
.
target
)))
logging
.
info
(
'adversary:
\n
original_label: {}'
'
\n
target_lable: {}'
...
...
fluid/adversarial/advbox/attacks/deepfool.py
0 → 100644
浏览文件 @
7a0013c5
"""
This module provide the attack method for deepfool. Deepfool is a simple and
accurate adversarial attack.
"""
from
__future__
import
division
import
logging
import
numpy
as
np
from
.base
import
Attack
class
DeepFoolAttack
(
Attack
):
"""
DeepFool: a simple and accurate method to fool deep neural networks",
Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard,
https://arxiv.org/abs/1511.04599
"""
def
_apply
(
self
,
adversary
,
iterations
=
100
,
overshoot
=
0.02
):
"""
Apply the deep fool attack.
Args:
adversary(Adversary): The Adversary object.
iterations(int): The iterations.
overshoot(float): We add (1+overshoot)*pert every iteration.
Return:
adversary: The Adversary object.
"""
assert
adversary
is
not
None
pre_label
=
adversary
.
original_label
min_
,
max_
=
self
.
model
.
bounds
()
f
=
self
.
model
.
predict
(
adversary
.
original
)
if
adversary
.
is_targeted_attack
:
labels
=
[
adversary
.
target_label
]
else
:
max_class_count
=
10
class_count
=
self
.
model
.
num_classes
()
if
class_count
>
max_class_count
:
labels
=
np
.
argsort
(
f
)[
-
(
max_class_count
+
1
):
-
1
]
else
:
labels
=
np
.
arange
(
class_count
)
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
pre_label
)
x
=
adversary
.
original
for
iteration
in
xrange
(
iterations
):
w
=
np
.
inf
w_norm
=
np
.
inf
pert
=
np
.
inf
for
k
in
labels
:
if
k
==
pre_label
:
continue
gradient_k
=
self
.
model
.
gradient
(
x
,
k
)
w_k
=
gradient_k
-
gradient
f_k
=
f
[
k
]
-
f
[
pre_label
]
w_k_norm
=
np
.
linalg
.
norm
(
w_k
)
+
1e-8
pert_k
=
(
np
.
abs
(
f_k
)
+
1e-8
)
/
w_k_norm
if
pert_k
<
pert
:
pert
=
pert_k
w
=
w_k
w_norm
=
w_k_norm
r_i
=
-
w
*
pert
/
w_norm
# The gradient is -gradient in the paper.
x
=
x
+
(
1
+
overshoot
)
*
r_i
x
=
np
.
clip
(
x
,
min_
,
max_
)
f
=
self
.
model
.
predict
(
x
)
gradient
=
self
.
model
.
gradient
(
x
,
pre_label
)
adv_label
=
np
.
argmax
(
f
)
logging
.
info
(
'iteration = {}, f = {}, pre_label = {}'
', adv_label={}'
.
format
(
iteration
,
f
[
pre_label
],
pre_label
,
adv_label
))
if
adversary
.
try_accept_the_example
(
x
,
adv_label
):
return
adversary
return
adversary
fluid/adversarial/advbox/attacks/gradientsign.py
浏览文件 @
7a0013c5
...
...
@@ -37,19 +37,18 @@ class GradientSignAttack(Attack):
min_
,
max_
=
self
.
model
.
bounds
()
if
adversary
.
is_targeted_attack
:
gradient
=
self
.
model
.
gradient
(
[(
adversary
.
original
,
adversary
.
target_label
)]
)
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
target_label
)
gradient_sign
=
-
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
else
:
gradient
=
self
.
model
.
gradient
(
[(
adversary
.
original
,
adversary
.
original_label
)]
)
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
original_label
)
gradient_sign
=
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
original
=
adversary
.
original
.
reshape
(
gradient_sign
.
shape
)
for
epsilon
in
epsilons
:
adv_img
=
original
+
epsilon
*
gradient_sign
adv_img
=
adversary
.
original
+
epsilon
*
gradient_sign
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
[(
adv_img
,
0
)]
))
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
adv_img
))
logging
.
info
(
'epsilon = {:.3f}, pre_label = {}, adv_label={}'
.
format
(
epsilon
,
pre_label
,
adv_label
))
if
adversary
.
try_accept_the_example
(
adv_img
,
adv_label
):
...
...
fluid/adversarial/advbox/attacks/iterator_gradientsign.py
浏览文件 @
7a0013c5
...
...
@@ -35,21 +35,19 @@ class IteratorGradientSignAttack(Attack):
min_
,
max_
=
self
.
model
.
bounds
()
for
epsilon
in
epsilons
:
adv_img
=
None
adv_img
=
adversary
.
original
for
_
in
range
(
steps
):
if
adversary
.
is_targeted_attack
:
gradient
=
self
.
model
.
gradient
(
[(
adversary
.
original
,
adversary
.
target_label
)]
)
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
target_label
)
gradient_sign
=
-
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
else
:
gradient
=
self
.
model
.
gradient
(
[(
adversary
.
original
,
adversary
.
original_label
)]
)
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
original_label
)
gradient_sign
=
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
if
adv_img
is
None
:
adv_img
=
adversary
.
original
.
reshape
(
gradient_sign
.
shape
)
adv_img
=
adv_img
+
gradient_sign
*
epsilon
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
[(
adv_img
,
0
)]
))
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
adv_img
))
logging
.
info
(
'epsilon = {:.3f}, pre_label = {}, adv_label={}'
.
format
(
epsilon
,
pre_label
,
adv_label
))
if
adversary
.
try_accept_the_example
(
adv_img
,
adv_label
):
...
...
fluid/adversarial/advbox/models/base.py
浏览文件 @
7a0013c5
...
...
@@ -43,26 +43,31 @@ class Model(object):
return
self
.
_channel_axis
def
_process_input
(
self
,
input_
):
res
=
input_
res
=
None
sub
,
div
=
self
.
_preprocess
if
np
.
any
(
sub
!=
0
):
res
=
input_
-
sub
assert
np
.
any
(
div
!=
0
)
if
np
.
any
(
div
!=
1
):
res
/=
div
if
res
is
None
:
# "res = input_ - sub" is not executed!
res
=
input_
/
div
else
:
res
/=
div
if
res
is
None
:
# "res = (input_ - sub)/ div" is not executed!
return
input_
return
res
@
abstractmethod
def
predict
(
self
,
image_batch
):
def
predict
(
self
,
data
):
"""
Calculate the prediction of the
image batch
.
Calculate the prediction of the
data
.
Args:
image_batch(numpy.ndarray): image batch of shape (batch_
size,
data(numpy.ndarray): input data with shape (
size,
height, width, channels).
Return:
numpy.ndarray: predictions of the
images
with shape (batch_size,
numpy.ndarray: predictions of the
data
with shape (batch_size,
num_of_classes).
"""
raise
NotImplementedError
...
...
@@ -78,12 +83,14 @@ class Model(object):
raise
NotImplementedError
@
abstractmethod
def
gradient
(
self
,
image_batch
):
def
gradient
(
self
,
data
,
label
):
"""
Calculate the gradient of the cross-entropy loss w.r.t the image.
Args:
image_batch(list): The image and label tuple list.
data(numpy.ndarray): input data with shape (size, height, width,
channels).
label(int): Label used to calculate the gradient.
Return:
numpy.ndarray: gradient of the cross-entropy loss w.r.t the image
...
...
fluid/adversarial/advbox/models/paddle.py
浏览文件 @
7a0013c5
...
...
@@ -3,6 +3,7 @@ Paddle model
"""
from
__future__
import
absolute_import
import
numpy
as
np
import
paddle.v2.fluid
as
fluid
from
.base
import
Model
...
...
@@ -54,24 +55,28 @@ class PaddleModel(Model):
self
.
_gradient
=
filter
(
lambda
p
:
p
[
0
].
name
==
self
.
_input_name
,
param_grads
)[
0
][
1
]
def
predict
(
self
,
image_batch
):
def
predict
(
self
,
data
):
"""
Predict the label of the image_batch
.
Calculate the prediction of the data
.
Args:
image_batch(list): The image and label tuple list.
Return:
numpy.ndarray: predictions of the images with shape (batch_size,
num_of_classes).
Args:
data(numpy.ndarray): input data with shape (size,
height, width, channels).
Return:
numpy.ndarray: predictions of the data with shape (batch_size,
num_of_classes).
"""
scaled_data
=
self
.
_process_input
(
data
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
self
.
_input_name
,
self
.
_logits_name
],
place
=
self
.
_place
,
program
=
self
.
_program
)
predict_var
=
self
.
_program
.
block
(
0
).
var
(
self
.
_predict_name
)
predict
=
self
.
_exe
.
run
(
self
.
_program
,
feed
=
feeder
.
feed
(
image_batch
),
feed
=
feeder
.
feed
(
[(
scaled_data
,
0
)]
),
fetch_list
=
[
predict_var
])
predict
=
np
.
squeeze
(
predict
,
axis
=
0
)
return
predict
def
num_classes
(
self
):
...
...
@@ -85,21 +90,27 @@ class PaddleModel(Model):
assert
len
(
predict_var
.
shape
)
==
2
return
predict_var
.
shape
[
1
]
def
gradient
(
self
,
image_batch
):
def
gradient
(
self
,
data
,
label
):
"""
Calculate the gradient of the
loss w.r.t the input
.
Calculate the gradient of the
cross-entropy loss w.r.t the image
.
Args:
image_batch(list): The image and label tuple list.
data(numpy.ndarray): input data with shape (size, height, width,
channels).
label(int): Label used to calculate the gradient.
Return:
list: The list of the gradient of the image.
numpy.ndarray: gradient of the cross-entropy loss w.r.t the image
with the shape (height, width, channel).
"""
scaled_data
=
self
.
_process_input
(
data
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
self
.
_input_name
,
self
.
_logits_name
],
place
=
self
.
_place
,
program
=
self
.
_program
)
grad
,
=
self
.
_exe
.
run
(
self
.
_program
,
feed
=
feeder
.
feed
(
image_batch
),
feed
=
feeder
.
feed
(
[(
scaled_data
,
label
)]
),
fetch_list
=
[
self
.
_gradient
])
return
grad
return
grad
.
reshape
(
data
.
shape
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录