Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
796c965a
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
796c965a
编写于
4月 11, 2018
作者:
G
gmcather
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add files
上级
7db51b20
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
147 addition
and
168 deletion
+147
-168
fluid/text_classification/config.py
fluid/text_classification/config.py
+0
-16
fluid/text_classification/infer.py
fluid/text_classification/infer.py
+51
-0
fluid/text_classification/nets.py
fluid/text_classification/nets.py
+1
-1
fluid/text_classification/train.py
fluid/text_classification/train.py
+95
-151
未找到文件。
fluid/text_classification/config.py
已删除
100644 → 0
浏览文件 @
7db51b20
class
TrainConfig
(
object
):
# Whether to use GPU in training or not.
use_gpu
=
False
# The training batch size.
batch_size
=
4
# The epoch number.
num_passes
=
30
# The global learning rate.
learning_rate
=
0.01
# Training log will be printed every log_period.
log_period
=
100
fluid/text_classification/infer.py
0 → 100644
浏览文件 @
796c965a
"""
For http://wiki.baidu.com/display/LegoNet/Text+Classification
"""
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
numpy
as
np
import
sys
import
time
import
unittest
import
contextlib
import
utils
def
infer
(
test_reader
,
use_cuda
,
save_dirname
=
None
):
"""
inference function
"""
if
save_dirname
is
None
:
print
(
str
(
save_dirname
)
+
" cannot be found"
)
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
total_acc
=
0.0
total_count
=
0
for
data
in
test_reader
():
acc
=
exe
.
run
(
inference_program
,
feed
=
utils
.
data2tensor
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
total_acc
+=
acc
[
0
]
*
len
(
data
)
total_count
+=
len
(
data
)
print
(
"test_acc: %f"
%
(
total_acc
/
total_count
))
if
__name__
==
"__main__"
:
word_dict
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
)
model_path
=
sys
.
argv
[
1
]
test
(
test_reader
,
use_cuda
=
True
,
save_dirname
=
model_path
)
fluid/text_classification/nets.py
浏览文件 @
796c965a
...
...
@@ -37,7 +37,7 @@ def bow_net(data, label,
return
avg_cost
,
acc
,
prediction
def
c
onv
_net
(
data
,
label
,
def
c
nn
_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
fluid/text_classification/train.py
浏览文件 @
796c965a
"""
For http://wiki.baidu.com/display/LegoNet/Text+Classification
"""
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
numpy
as
np
import
sys
import
os
import
argparse
import
time
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
from
config
import
TrainConfig
as
conf
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--dict_path'
,
type
=
str
,
required
=
True
,
help
=
"Path of the word dictionary."
)
return
parser
.
parse_args
()
# Define to_lodtensor function to process the sequential data.
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
fluid
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
# Load the dictionary.
def
load_vocab
(
filename
):
vocab
=
{}
with
open
(
filename
)
as
f
:
for
idx
,
line
in
enumerate
(
f
):
vocab
[
line
.
strip
()]
=
idx
return
vocab
# Define the convolution model.
def
conv_net
(
dict_dim
,
window_size
=
3
,
emb_dim
=
128
,
num_filters
=
128
,
fc0_dim
=
96
,
class_dim
=
2
):
import
unittest
import
contextlib
import
utils
from
nets
import
bow_net
from
nets
import
cnn_net
from
nets
import
lstm_net
from
nets
import
gru_net
def
train
(
train_reader
,
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
"""
train network
"""
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
num_filters
,
filter_size
=
window_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
fc_0
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
fc0_dim
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_0
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
data
,
label
,
prediction
,
avg_cost
def
main
(
dict_path
):
word_dict
=
load_vocab
(
dict_path
)
word_dict
[
"<unk>"
]
=
len
(
word_dict
)
dict_dim
=
len
(
word_dict
)
print
(
"The dictionary size is : %d"
%
dict_dim
)
data
,
label
,
prediction
,
avg_cost
=
conv_net
(
dict_dim
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
conf
.
learning_rate
)
sgd_optimizer
.
minimize
(
avg_cost
)
batch_size_var
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc_var
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
,
total
=
batch_size_var
)
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
inference_program
=
fluid
.
io
.
get_inference_program
(
target_vars
=
[
batch_acc_var
,
batch_size_var
])
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
if
not
parallel
:
cost
,
acc
,
prediction
=
network
(
data
,
label
,
len
(
word_dict
))
else
:
places
=
fluid
.
layers
.
get_places
(
device_count
=
2
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
cost
,
acc
,
prediction
=
network
(
pd
.
read_input
(
data
),
pd
.
read_input
(
label
),
len
(
word_dict
))
# The training data set.
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
51200
),
batch_size
=
conf
.
batch_size
)
pd
.
write_output
(
cost
)
pd
.
write_output
(
acc
)
# The testing data set.
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
buf_size
=
51200
),
batch_size
=
conf
.
batch_size
)
cost
,
acc
=
pd
()
cost
=
fluid
.
layers
.
mean
(
cost
)
acc
=
fluid
.
layers
.
mean
(
acc
)
if
conf
.
use_gpu
:
place
=
fluid
.
CUDAPlace
(
0
)
else
:
place
=
fluid
.
CPUPlace
()
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
lr
)
sgd_optimizer
.
minimize
(
cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
xrange
(
pass_num
):
avg_cost_list
,
avg_acc_list
=
[],
[]
for
data
in
train_reader
():
avg_cost_np
,
avg_acc_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc
])
avg_cost_list
.
append
(
avg_cost_np
)
avg_acc_list
.
append
(
avg_acc_np
)
print
(
"pass_id: %d, avg_acc: %f"
%
(
pass_id
,
np
.
mean
(
avg_acc_list
)))
# save_model
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
"words"
,
"label"
],
acc
,
exe
)
def
train_net
():
word_dict
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
"imdb"
,
self_dict
=
False
,
batch_size
=
128
,
buf_size
=
50000
)
if
sys
.
argv
[
1
]
==
"bow"
:
train
(
train_reader
,
word_dict
,
bow_net
,
use_cuda
=
False
,
parallel
=
False
,
save_dirname
=
"bow_model"
,
lr
=
0.002
,
pass_num
=
1
,
batch_size
=
128
)
elif
sys
.
argv
[
1
]
==
"cnn"
:
train
(
train_reader
,
word_dict
,
cnn_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"cnn_model"
,
lr
=
0.01
,
pass_num
=
30
,
batch_size
=
4
)
elif
sys
.
argv
[
1
]
==
"lstm"
:
train
(
train_reader
,
word_dict
,
lstm_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"lstm_model"
,
lr
=
0.05
,
pass_num
=
30
,
batch_size
=
4
)
elif
sys
.
argv
[
1
]
==
"gru"
:
train
(
train_reader
,
word_dict
,
bow_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"gru_model"
,
lr
=
0.05
,
pass_num
=
30
,
batch_size
=
128
)
else
:
print
(
"network name cannot be found!"
)
sys
.
exit
(
1
)
train_pass_acc_evaluator
=
fluid
.
average
.
WeightedAverage
()
test_pass_acc_evaluator
=
fluid
.
average
.
WeightedAverage
()
def
test
(
exe
):
test_pass_acc_evaluator
.
reset
()
for
batch_id
,
data
in
enumerate
(
test_reader
()):
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
b_acc
,
b_size
=
exe
.
run
(
inference_program
,
feed
=
{
"words"
:
input_seq
,
"label"
:
y_data
},
fetch_list
=
[
batch_acc_var
,
batch_size_var
])
test_pass_acc_evaluator
.
add
(
value
=
b_acc
,
weight
=
b_size
)
test_acc
=
test_pass_acc_evaluator
.
eval
()
return
test_acc
total_time
=
0.
for
pass_id
in
xrange
(
conf
.
num_passes
):
train_pass_acc_evaluator
.
reset
()
start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
cost_val
,
acc_val
,
size_val
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
batch_acc_var
,
batch_size_var
])
train_pass_acc_evaluator
.
add
(
value
=
acc_val
,
weight
=
size_val
)
if
batch_id
and
batch_id
%
conf
.
log_period
==
0
:
print
(
"Pass id: %d, batch id: %d, cost: %f, pass_acc: %f"
%
(
pass_id
,
batch_id
,
cost_val
,
train_pass_acc_evaluator
.
eval
()))
end_time
=
time
.
time
()
total_time
+=
(
end_time
-
start_time
)
pass_test_acc
=
test
(
exe
)
print
(
"Pass id: %d, test_acc: %f"
%
(
pass_id
,
pass_test_acc
))
print
(
"Total train time: %f"
%
(
total_time
))
if
__name__
==
'__main__'
:
args
=
parse_args
()
main
(
args
.
dict_path
)
if
__name__
==
"__main__"
:
train_net
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录