Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
78e6a016
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
78e6a016
编写于
10月 14, 2019
作者:
W
whs
提交者:
GitHub
10月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix doc of pruing yolov3 demo in PaddleDetection. (#3561)
上级
e09a4af0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
12 addition
and
13 deletion
+12
-13
PaddleCV/PaddleDetection/slim/prune/README.md
PaddleCV/PaddleDetection/slim/prune/README.md
+11
-11
PaddleCV/PaddleDetection/slim/prune/compress.py
PaddleCV/PaddleDetection/slim/prune/compress.py
+1
-2
未找到文件。
PaddleCV/PaddleDetection/slim/prune/README.md
浏览文件 @
78e6a016
...
...
@@ -7,7 +7,8 @@
该示例使用PaddleSlim提供的
[
卷积通道剪裁压缩策略
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#2-%E5%8D%B7%E7%A7%AF%E6%A0%B8%E5%89%AA%E8%A3%81%E5%8E%9F%E7%90%86
)
对检测库中的模型进行压缩。
在阅读该示例前,建议您先了解以下内容:
-
<a
href=
"../..README_cn.md"
>
检测库的常规训练方法
</a>
-
<a
href=
"../../README_cn.md"
>
检测库的常规训练方法
</a>
-
[
检测模型数据准备
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/PaddleDetection/docs/INSTALL_cn.md#%E6%95%B0%E6%8D%AE%E9%9B%86
)
-
[
PaddleSlim使用文档
](
https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/usage.md
)
...
...
@@ -109,6 +110,7 @@ python compress.py \
-s yolov3_mobilenet_v1_slim.yaml \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
-o max_iters=258 \
YoloTrainFeed.batch_size=64 \
-d "../../dataset/voc"
```
...
...
@@ -117,7 +119,7 @@ python compress.py \
如果要调整训练卡数,需要调整配置文件
`yolov3_mobilenet_v1_voc.yml`
中的以下参数:
-
**max_iters:**
一个
`epoch`
中batch的数量,需要设置为
`total_num / batch_size`
, 其中
`total_num`
为训练样本总数量,
`batch_size`
为多卡上总的batch size.
-
**YoloTrainFeed.batch_size:**
单张卡上的batch size,
受限于显存大小。
-
**YoloTrainFeed.batch_size:**
当使用DataLoader时,表示单张卡上的batch size; 当使用普通reader时,则表示多卡上的总的
`batch_size`
。
`batch_size`
受限于显存大小。
-
**LeaningRate.base_lr:**
根据多卡的总
`batch_size`
调整
`base_lr`
,两者大小正相关,可以简单的按比例进行调整。
-
**LearningRate.schedulers.PiecewiseDecay.milestones:**
请根据batch size的变化对其调整。
-
**LearningRate.schedulers.PiecewiseDecay.LinearWarmup.steps:**
请根据batch size的变化对其进行调整。
...
...
@@ -130,7 +132,7 @@ python compress.py \
-s yolov3_mobilenet_v1_slim.yaml \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
-o max_iters=258 \
-o YoloTrainFeed.batch_size = 16
\
YoloTrainFeed.batch_size=64
\
-d "../../dataset/voc"
```
...
...
@@ -140,9 +142,9 @@ python compress.py \
-s yolov3_mobilenet_v1_slim.yaml \
-c ../../configs/yolov3_mobilenet_v1_voc.yml \
-o max_iters=516 \
-o LeaningRate.base_lr=0.005 \ # 0.001 /2
-o YoloTrainFeed.batch_size = 16
\
-o
LearningRate.schedulers='[!PiecewiseDecay {gamma: 0.1, milestones: [110000, 124000]}, !LinearWarmup {start_factor: 0., steps: 2000}]' \
LeaningRate.base_lr=0.005 \
YoloTrainFeed.batch_size=32
\
LearningRate.schedulers='[!PiecewiseDecay {gamma: 0.1, milestones: [110000, 124000]}, !LinearWarmup {start_factor: 0., steps: 2000}]' \
-d "../../dataset/voc"
```
...
...
@@ -189,11 +191,9 @@ python compress.py \
### MobileNetV1-YOLO-V3
| FLOPS |
top1_acc/top5_acc
| model_size |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|
| FLOPS |
Box AP
| model_size |Paddle Fluid inference time(ms)| Paddle Lite inference time(ms)|
|---|---|---|---|---|
|baseline|- |- |- |-|
|-10%|- |- |- |-|
|-30%|- |- |- |-|
|-50%|- |- |- |-|
|baseline|76.2 |93M |- |-|
|-50%|69.48 |51M |- |-|
## FAQ
PaddleCV/PaddleDetection/slim/prune/compress.py
浏览文件 @
78e6a016
...
...
@@ -148,7 +148,7 @@ def main():
optimizer
.
minimize
(
loss
)
train_reader
=
create_reader
(
train_feed
,
cfg
.
max_iters
*
devices_num
,
train_reader
=
create_reader
(
train_feed
,
cfg
.
max_iters
,
FLAGS
.
dataset_dir
)
train_loader
.
set_sample_list_generator
(
train_reader
,
place
)
...
...
@@ -207,7 +207,6 @@ def main():
best_box_ap_list
.
append
(
box_ap_stats
[
0
])
elif
box_ap_stats
[
0
]
>
best_box_ap_list
[
0
]:
best_box_ap_list
[
0
]
=
box_ap_stats
[
0
]
checkpoint
.
save
(
exe
,
train_prog
,
os
.
path
.
join
(
save_dir
,
"best_model"
))
logger
.
info
(
"Best test box ap: {}"
.
format
(
best_box_ap_list
[
0
]))
return
best_box_ap_list
[
0
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录