“ccefde203adb1a5af99fb3ce30ba553f0aec1680”上不存在“paddle/git@gitcode.net:s920243400/PaddleDetection.git”
提交 779485bc 编写于 作者: K kuke 提交者: Yibing

remove unused annotations

上级 803ee976
...@@ -22,9 +22,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -22,9 +22,7 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
type=paddle.data_type.integer_value_sequence(source_dict_dim)) type=paddle.data_type.integer_value_sequence(source_dict_dim))
src_embedding = paddle.layer.embedding( src_embedding = paddle.layer.embedding(
input=src_word_id, input=src_word_id, size=word_vector_dim)
size=word_vector_dim,
param_attr=paddle.attr.ParamAttr(name='_source_language_embedding'))
encoder_forward = paddle.networks.simple_gru( encoder_forward = paddle.networks.simple_gru(
input=src_embedding, input=src_embedding,
...@@ -91,11 +89,6 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -91,11 +89,6 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
param_attr=paddle.attr.ParamAttr(name='_target_language_embedding')) param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
group_inputs.append(trg_embedding) group_inputs.append(trg_embedding)
# For decoder equipped without attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder = paddle.layer.recurrent_group( decoder = paddle.layer.recurrent_group(
name=decoder_group_name, name=decoder_group_name,
step=gru_decoder_without_attention, step=gru_decoder_without_attention,
...@@ -108,14 +101,6 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False): ...@@ -108,14 +101,6 @@ def seq2seq_net(source_dict_dim, target_dict_dim, generating=False):
return cost return cost
else: else:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the last generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the last generated word is automatically gotten by
# GeneratedInputs, which is initialized by a start mark, such as <s>,
# and must be included in generation.
trg_embedding = paddle.layer.GeneratedInputV2( trg_embedding = paddle.layer.GeneratedInputV2(
size=target_dict_dim, size=target_dict_dim,
...@@ -193,8 +178,7 @@ def generate(source_dict_dim, target_dict_dim): ...@@ -193,8 +178,7 @@ def generate(source_dict_dim, target_dict_dim):
break break
beam_gen = seq2seq_net(source_dict_dim, target_dict_dim, True) beam_gen = seq2seq_net(source_dict_dim, target_dict_dim, True)
# get the pretrained model, whose bleu = 26.92
# parameters = paddle.dataset.wmt14.model()
with gzip.open('models/nmt_without_att_params_batch_400.tar.gz') as f: with gzip.open('models/nmt_without_att_params_batch_400.tar.gz') as f:
parameters = paddle.parameters.Parameters.from_tar(f) parameters = paddle.parameters.Parameters.from_tar(f)
# prob is the prediction probabilities, and id is the prediction word. # prob is the prediction probabilities, and id is the prediction word.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册