Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
768112b4
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
768112b4
编写于
11月 28, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update feeder to pyreader
上级
2dc53cb0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
71 addition
and
31 deletion
+71
-31
fluid/PaddleRec/ctr/network_conf.py
fluid/PaddleRec/ctr/network_conf.py
+19
-10
fluid/PaddleRec/ctr/train.py
fluid/PaddleRec/ctr/train.py
+52
-21
未找到文件。
fluid/PaddleRec/ctr/network_conf.py
浏览文件 @
768112b4
...
...
@@ -3,15 +3,27 @@ import math
dense_feature_dim
=
13
def
ctr_dnn_model
(
embedding_size
,
sparse_feature_dim
):
dense_input
=
fluid
.
layers
.
data
(
name
=
"dense_input"
,
shape
=
[
dense_feature_dim
],
dtype
=
'float32'
)
sparse_input_ids
=
[
fluid
.
layers
.
data
(
name
=
"C"
+
str
(
i
),
shape
=
[
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
1
,
27
)
]
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
datas
=
[
dense_input
]
+
sparse_input_ids
+
[
label
]
py_reader
=
fluid
.
layers
.
create_py_reader_by_data
(
capacity
=
64
,
feed_list
=
datas
,
name
=
'py_reader'
,
use_double_buffer
=
True
)
words
=
fluid
.
layers
.
read_file
(
py_reader
)
def
embedding_layer
(
input
):
return
fluid
.
layers
.
embedding
(
input
=
input
,
...
...
@@ -22,8 +34,8 @@ def ctr_dnn_model(embedding_size, sparse_feature_dim):
size
=
[
sparse_feature_dim
,
embedding_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"SparseFeatFactors"
,
initializer
=
fluid
.
initializer
.
Uniform
()))
sparse_embed_seq
=
map
(
embedding_layer
,
sparse_input_ids
)
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
+
[
dense_input
],
axis
=
1
)
sparse_embed_seq
=
map
(
embedding_layer
,
words
[
1
:
-
1
]
)
concated
=
fluid
.
layers
.
concat
(
sparse_embed_seq
+
words
[
0
:
1
],
axis
=
1
)
fc1
=
fluid
.
layers
.
fc
(
input
=
concated
,
size
=
400
,
act
=
'relu'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
concated
.
shape
[
1
]))))
...
...
@@ -34,13 +46,10 @@ def ctr_dnn_model(embedding_size, sparse_feature_dim):
predict
=
fluid
.
layers
.
fc
(
input
=
fc3
,
size
=
2
,
act
=
'softmax'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
fc3
.
shape
[
1
]))))
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
data_list
=
[
dense_input
]
+
sparse_input_ids
+
[
label
]
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
words
[
-
1
:])
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
auc_var
,
batch_auc_var
,
auc_states
=
fluid
.
layers
.
auc
(
input
=
predict
,
label
=
label
,
num_thresholds
=
2
**
12
,
slide_steps
=
20
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
words
[
-
1
:])
auc_var
,
batch_auc_var
,
auc_states
=
\
fluid
.
layers
.
auc
(
input
=
predict
,
label
=
words
[
-
1
:],
num_thresholds
=
2
**
12
,
slide_steps
=
20
)
return
avg_cost
,
data_list
,
auc_var
,
batch_auc_va
r
return
avg_cost
,
auc_var
,
batch_auc_var
,
py_reade
r
fluid/PaddleRec/ctr/train.py
浏览文件 @
768112b4
...
...
@@ -5,14 +5,18 @@ import logging
import
os
import
time
# disable gpu training for this example
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
""
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
reader
from
network_conf
import
ctr_dnn_model
from
multiprocessing
import
cpu_count
# disable gpu training for this example
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
""
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
...
...
@@ -107,7 +111,7 @@ def parse_args():
return
parser
.
parse_args
()
def
train_loop
(
args
,
train_program
,
data_list
,
loss
,
auc_var
,
batch_auc_var
,
def
train_loop
(
args
,
train_program
,
py_reader
,
loss
,
auc_var
,
batch_auc_var
,
trainer_num
,
trainer_id
):
dataset
=
reader
.
CriteoDataset
(
args
.
sparse_feature_dim
)
train_reader
=
paddle
.
batch
(
...
...
@@ -115,28 +119,56 @@ def train_loop(args, train_program, data_list, loss, auc_var, batch_auc_var,
dataset
.
train
([
args
.
train_data_path
],
trainer_num
,
trainer_id
),
buf_size
=
args
.
batch_size
*
100
),
batch_size
=
args
.
batch_size
)
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
data_name_list
=
[
var
.
name
for
var
in
data_list
]
py_reader
.
decorate_paddle_reader
(
train_reader
)
data_name_list
=
None
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
if
os
.
getenv
(
"NUM_THREADS"
,
""
):
exec_strategy
.
num_threads
=
int
(
os
.
getenv
(
"NUM_THREADS"
))
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
cpu_count
()))
build_strategy
.
reduce_strategy
=
\
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
if
cpu_num
>
1
\
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
False
,
loss_name
=
loss
.
name
,
main_program
=
train_program
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
range
(
args
.
num_passes
):
pass_start
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
loss_val
,
auc_val
,
batch_auc_val
=
exe
.
run
(
train_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
,
auc_var
,
batch_auc_var
]
)
logger
.
info
(
"TRAIN --> pass: {} batch: {} loss: {} auc: {}, batch_auc: {}"
batch_id
=
0
py_reader
.
start
()
try
:
while
True
:
loss_val
,
auc_val
,
batch_auc_val
=
pe
.
run
(
fetch_list
=
[
loss
.
name
,
auc_var
.
name
,
batch_auc_var
.
name
])
loss_val
=
np
.
mean
(
loss_val
)
auc_val
=
np
.
mean
(
auc_val
)
batch_auc_val
=
np
.
mean
(
batch_auc_val
)
logger
.
info
(
"TRAIN --> pass: {} batch: {} loss: {} auc: {}, batch_auc: {}"
.
format
(
pass_id
,
batch_id
,
loss_val
/
args
.
batch_size
,
auc_val
,
batch_auc_val
))
if
batch_id
%
1000
==
0
and
batch_id
!=
0
:
model_dir
=
args
.
model_output_dir
+
'/batch-'
+
str
(
batch_id
)
if
args
.
trainer_id
==
0
:
fluid
.
io
.
save_inference_model
(
model_dir
,
data_name_list
,
[
loss
,
auc_var
],
exe
)
if
batch_id
%
1000
==
0
and
batch_id
!=
0
:
model_dir
=
args
.
model_output_dir
+
'/batch-'
+
str
(
batch_id
)
if
args
.
trainer_id
==
0
:
fluid
.
io
.
save_inference_model
(
model_dir
,
data_name_list
,
[
loss
,
auc_var
],
exe
)
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
py_reader
.
reset
()
print
(
"pass_id: %d, pass_time_cost: %f"
%
(
pass_id
,
time
.
time
()
-
pass_start
))
model_dir
=
args
.
model_output_dir
+
'/pass-'
+
str
(
pass_id
)
if
args
.
trainer_id
==
0
:
fluid
.
io
.
save_inference_model
(
model_dir
,
data_name_list
,
[
loss
,
auc_var
],
exe
)
...
...
@@ -148,7 +180,7 @@ def train():
if
not
os
.
path
.
isdir
(
args
.
model_output_dir
):
os
.
mkdir
(
args
.
model_output_dir
)
loss
,
data_list
,
auc_var
,
batch_auc_va
r
=
ctr_dnn_model
(
args
.
embedding_size
,
args
.
sparse_feature_dim
)
loss
,
auc_var
,
batch_auc_var
,
py_reade
r
=
ctr_dnn_model
(
args
.
embedding_size
,
args
.
sparse_feature_dim
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-4
)
optimizer
.
minimize
(
loss
)
if
args
.
cloud_train
:
...
...
@@ -166,11 +198,10 @@ def train():
args
.
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
"0"
))
args
.
is_local
=
bool
(
int
(
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
0
)))
if
args
.
is_local
:
logger
.
info
(
"run local training"
)
main_program
=
fluid
.
default_main_program
()
train_loop
(
args
,
main_program
,
data_list
,
loss
,
auc_var
,
batch_auc_var
,
1
,
0
)
train_loop
(
args
,
main_program
,
py_reader
,
loss
,
auc_var
,
batch_auc_var
,
1
,
0
)
else
:
logger
.
info
(
"run dist training"
)
t
=
fluid
.
DistributeTranspiler
()
...
...
@@ -185,7 +216,7 @@ def train():
elif
args
.
role
==
"trainer"
or
args
.
role
==
"TRAINER"
:
logger
.
info
(
"run trainer"
)
train_prog
=
t
.
get_trainer_program
()
train_loop
(
args
,
train_prog
,
data_list
,
loss
,
auc_var
,
batch_auc_var
,
train_loop
(
args
,
train_prog
,
py_reader
,
loss
,
auc_var
,
batch_auc_var
,
args
.
trainers
,
args
.
trainer_id
)
else
:
raise
ValueError
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录