提交 70150f9d 编写于 作者: F frankwhzhang

add infer for multiview-simnet

上级 bb61076b
......@@ -15,8 +15,13 @@
```bash
python train.py
```
##
如下
如下命令行可以获得预测工具的具体选项,`python infer -h`内容可以参考说明
```bash
python infer.py
```
## 未来的工作
- 多种pairwise的损失函数会被加入到这个项目中。对于不同视角的特征,用户-项目之间的匹配关系可以使用不同的损失函数进行联合优化。整个模型会在真实数据中进行验证。
- 推理工具会被加入
- Parallel Executor选项会被加入
- 分布式训练能力会被加入
......@@ -15,8 +15,13 @@ The command line options for training can be listed by `python train.py -h`
python train.py
```
## Infer
The command line options for inference can be listed by `python infer.py -h`
```bash
python infer.py
```
## Future work
- Multiple types of pairwise loss will be added in this project. For different views of features between a user and an item, multiple losses will be supported. The model will be verified in real world dataset.
- infer will be added
- Parallel Executor will be added in this project
- Distributed Training will be added
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import six
import numpy as np
import math
import argparse
import logging
import paddle.fluid as fluid
import paddle
import time
import reader as reader
from nets import MultiviewSimnet, SimpleEncoderFactory
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser("multi-view simnet")
parser.add_argument(
"--train_file", type=str, help="Training file")
parser.add_argument(
"--valid_file", type=str, help="Validation file")
parser.add_argument(
"--epochs", type=int, default=10, help="Number of epochs for training")
parser.add_argument(
"--model_dir", type=str, default='model_output', help="Model output folder")
parser.add_argument(
"--query_slots", type=int, default=1, help="Number of query slots")
parser.add_argument(
"--title_slots", type=int, default=1, help="Number of title slots")
parser.add_argument(
"--query_encoder", type=str, default="bow", help="Encoder module for slot encoding")
parser.add_argument(
"--title_encoder", type=str, default="bow", help="Encoder module for slot encoding")
parser.add_argument(
"--query_encode_dim", type=int, default=128, help="Dimension of query encoder output")
parser.add_argument(
"--title_encode_dim", type=int, default=128, help="Dimension of title encoder output")
parser.add_argument(
"--batch_size", type=int, default=128, help="Batch size for training")
parser.add_argument(
"--embedding_dim", type=int, default=128, help="Default Dimension of Embedding")
parser.add_argument(
"--sparse_feature_dim", type=int, default=1000001, help="Sparse feature hashing space for index processing")
parser.add_argument(
"--hidden_size", type=int, default=128, help="Hidden dim")
return parser.parse_args()
def start_infer(args, model_path):
dataset = reader.SyntheticDataset(args.sparse_feature_dim, args.query_slots,
args.title_slots)
test_reader = paddle.batch(
paddle.reader.shuffle(
dataset.valid(), buf_size=args.batch_size * 100),
batch_size=args.batch_size)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
with fluid.scope_guard(fluid.core.Scope()):
infer_program, feed_target_names, fetch_vars = fluid.io.load_inference_model(
args.model_dir, exe)
t0 = time.time()
step_id = 0
feeder = fluid.DataFeeder(program=infer_program, feed_list=feed_target_names, place=place)
for batch_id, data in enumerate(test_reader()):
step_id += 1
loss_val, correct_val = exe.run(infer_program,
feed=feeder.feed(data),
fetch_list=fetch_vars)
logger.info("TRAIN --> pass: {} batch_id: {} avg_cost: {}, acc: {}"
.format(step_id, batch_id, loss_val,
float(correct_val) / args.batch_size))
def main():
args = parse_args()
start_infer(args, args.model_dir)
if __name__ == "__main__":
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册