未验证 提交 6a535cfb 编写于 作者: G guochaorong 提交者: GitHub

Merge pull request #1096 from guochaorong/language_model_for_ce

language_model_for_ce
#!/bin/bash
export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1
cudaid=${language_model:=0} # use 0-th card as default
export CUDA_VISIBLE_DEVICES=$cudaid
FLAGS_benchmark=true python train.py | python _ce.py
cudaid=${language_model_m:=0,1,2,3} # use 0,1,2,3 card as default
export CUDA_VISIBLE_DEVICES=$cudaid
FLAGS_benchmark=true python train.py | python _ce.py
# this file is only used for continuous evaluation test!
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi
from kpi import DurationKpi
imikolov_20_avg_ppl_kpi = CostKpi('imikolov_20_avg_ppl', 0.2, 0)
imikolov_20_pass_duration_kpi = DurationKpi(
'imikolov_20_pass_duration', 0.02, 0, actived=True)
imikolov_20_avg_ppl_kpi_card4 = CostKpi('imikolov_20_avg_ppl_card4', 0.2, 0)
imikolov_20_pass_duration_kpi_card4 = DurationKpi(
'imikolov_20_pass_duration_card4', 0.03, 0, actived=True)
tracking_kpis = [
imikolov_20_avg_ppl_kpi,
imikolov_20_pass_duration_kpi,
imikolov_20_avg_ppl_kpi_card4,
imikolov_20_pass_duration_kpi_card4,
]
def parse_log(log):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost\t1.0
test_cost\t1.0
train_cost\t1.0
train_cost\t1.0
train_acc\t1.2
"
'''
for line in log.split('\n'):
fs = line.strip().split('\t')
print(fs)
if len(fs) == 3 and fs[0] == 'kpis':
kpi_name = fs[1]
kpi_value = float(fs[2])
yield kpi_name, kpi_value
def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name] = kpi
for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name, kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()
if __name__ == '__main__':
log = sys.stdin.read()
log_to_ce(log)
import os
import sys
import time
import numpy as np
import math
import argparse
import paddle.fluid as fluid
import paddle.v2 as paddle
import paddle
import utils
SEED = 102
def parse_args():
parser = argparse.ArgumentParser("language_model benchmark.")
parser.add_argument(
'--enable_ce',
action='store_true',
help='If set, run \
the task with continuous evaluation logs.')
args = parser.parse_args()
return args
def network(src, dst, vocab_size, hid_size, init_low_bound, init_high_bound):
""" network definition """
......@@ -63,31 +77,26 @@ def train(train_reader,
init_low_bound=-0.04,
init_high_bound=0.04):
""" train network """
args = parse_args()
if args.enable_ce:
# random seed must set before configuring the network.
fluid.default_startup_program().random_seed = SEED
vocab_size = len(vocab)
#Input data
src_wordseq = fluid.layers.data(
name="src_wordseq", shape=[1], dtype="int64", lod_level=1)
dst_wordseq = fluid.layers.data(
name="dst_wordseq", shape=[1], dtype="int64", lod_level=1)
# Train program
avg_cost = None
if not parallel:
cost = network(src_wordseq, dst_wordseq, vocab_size, hid_size,
init_low_bound, init_high_bound)
avg_cost = fluid.layers.mean(x=cost)
else:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
cost = network(
pd.read_input(src_wordseq),
pd.read_input(dst_wordseq), vocab_size, hid_size,
init_low_bound, init_high_bound)
pd.write_output(cost)
cost = pd()
avg_cost = fluid.layers.mean(x=cost)
cost = network(src_wordseq, dst_wordseq, vocab_size, hid_size,
init_low_bound, init_high_bound)
avg_cost = fluid.layers.mean(x=cost)
# Optimization to minimize lost
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=base_lr,
......@@ -96,39 +105,56 @@ def train(train_reader,
staircase=True))
sgd_optimizer.minimize(avg_cost)
# Initialize executor
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
total_time = 0.0
fetch_list = [avg_cost.name]
for pass_idx in xrange(pass_num):
epoch_idx = pass_idx + 1
print "epoch_%d start" % epoch_idx
t0 = time.time()
i = 0
newest_ppl = 0
for data in train_reader():
i += 1
lod_src_wordseq = utils.to_lodtensor(
map(lambda x: x[0], data), place)
lod_dst_wordseq = utils.to_lodtensor(
map(lambda x: x[1], data), place)
ret_avg_cost = exe.run(fluid.default_main_program(),
feed={
"src_wordseq": lod_src_wordseq,
"dst_wordseq": lod_dst_wordseq
},
fetch_list=[avg_cost],
use_program_cache=True)
avg_ppl = math.exp(ret_avg_cost[0])
ret_avg_cost = train_exe.run(feed={
"src_wordseq": lod_src_wordseq,
"dst_wordseq": lod_dst_wordseq
},
fetch_list=fetch_list)
avg_ppl = np.exp(ret_avg_cost[0])
newest_ppl = np.mean(avg_ppl)
if i % 100 == 0:
print "step:%d ppl:%.3f" % (i, avg_ppl)
print "step:%d ppl:%.3f" % (i, newest_ppl)
t1 = time.time()
total_time += t1 - t0
print "epoch:%d num_steps:%d time_cost(s):%f" % (epoch_idx, i,
total_time / epoch_idx)
if pass_idx == pass_num - 1 and args.enable_ce:
#Note: The following logs are special for CE monitoring.
#Other situations do not need to care about these logs.
gpu_num = get_cards()
if gpu_num == 1:
print("kpis imikolov_20_pass_duration %s" %
(total_time / epoch_idx))
print("kpis imikolov_20_avg_ppl %s" % newest_ppl)
else:
print("kpis imikolov_20_pass_duration_card%s %s" % \
(gpu_num, total_time / epoch_idx))
print("kpis imikolov_20_avg_ppl_card%s %s" %
(gpu_num, newest_ppl))
save_dir = "%s/epoch_%d" % (model_dir, epoch_idx)
feed_var_names = ["src_wordseq", "dst_wordseq"]
fetch_vars = [avg_cost]
......@@ -138,11 +164,22 @@ def train(train_reader,
print("finish training")
def get_cards(enable_ce):
if enable_ce:
cards = os.environ.get('CUDA_VISIBLE_DEVICES')
num = len(cards.split(","))
return num
else:
return fluid.core.get_cuda_device_count()
def train_net():
""" do training """
batch_size = 20
args = parse_args()
vocab, train_reader, test_reader = utils.prepare_data(
batch_size=batch_size, buffer_size=1000, word_freq_threshold=0)
batch_size=batch_size * get_cards(args.enable_ce), buffer_size=1000, \
word_freq_threshold=0, enable_ce = args.enable_ce)
train(
train_reader=train_reader,
vocab=vocab,
......@@ -152,7 +189,7 @@ def train_net():
batch_size=batch_size,
pass_num=12,
use_cuda=True,
parallel=False,
parallel=True,
model_dir="model",
init_low_bound=-0.1,
init_high_bound=0.1)
......
......@@ -3,7 +3,7 @@ import time
import numpy as np
import paddle.fluid as fluid
import paddle.v2 as paddle
import paddle
def to_lodtensor(data, place):
......@@ -22,17 +22,28 @@ def to_lodtensor(data, place):
return res
def prepare_data(batch_size, buffer_size=1000, word_freq_threshold=0):
def prepare_data(batch_size,
buffer_size=1000,
word_freq_threshold=0,
enable_ce=False):
""" prepare the English Pann Treebank (PTB) data """
vocab = paddle.dataset.imikolov.build_dict(word_freq_threshold)
train_reader = paddle.batch(
paddle.reader.shuffle(
if enable_ce:
train_reader = paddle.batch(
paddle.dataset.imikolov.train(
vocab,
buffer_size,
data_type=paddle.dataset.imikolov.DataType.SEQ),
buf_size=buffer_size),
batch_size)
batch_size)
else:
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imikolov.train(
vocab,
buffer_size,
data_type=paddle.dataset.imikolov.DataType.SEQ),
buf_size=buffer_size),
batch_size)
test_reader = paddle.batch(
paddle.dataset.imikolov.test(
vocab, buffer_size, data_type=paddle.dataset.imikolov.DataType.SEQ),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册