提交 69199db5 编写于 作者: X xuezhong

add predict

上级 d0319531
...@@ -22,6 +22,18 @@ import distutils.util ...@@ -22,6 +22,18 @@ import distutils.util
def parse_args(): def parse_args():
parser = argparse.ArgumentParser(description=__doc__) parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--train',
action='store_true',
help='train the model')
parser.add_argument(
'--evaluate',
action='store_true',
help='evaluate the model on dev set')
parser.add_argument(
'--predict',
action='store_true',
help='predict the answers for test set with trained model')
parser.add_argument( parser.add_argument(
"--embed_size", "--embed_size",
type=int, type=int,
...@@ -80,21 +92,65 @@ def parse_args(): ...@@ -80,21 +92,65 @@ def parse_args():
default=1000, default=1000,
help="cal dev loss every n batches." help="cal dev loss every n batches."
"(default: %(default)d)") "(default: %(default)d)")
parser.add_argument('--optim', default='rprop', help='optimizer type') parser.add_argument(
parser.add_argument('--trainset', nargs='+', help='train dataset') '--optim',
parser.add_argument('--devset', nargs='+', help='dev dataset') default='rprop',
parser.add_argument('--testset', nargs='+', help='test dataset') help='optimizer type')
parser.add_argument('--vocab_dir', help='dict') parser.add_argument(
parser.add_argument('--max_p_num', type=int, default=5) '--trainset',
parser.add_argument('--max_a_len', type=int, default=200) nargs='+',
parser.add_argument('--max_p_len', type=int, default=500) help='train dataset')
parser.add_argument('--max_q_len', type=int, default=9) parser.add_argument(
parser.add_argument('--doc_num', type=int, default=5) '--devset',
parser.add_argument('--para_print', action='store_true') nargs='+',
parser.add_argument('--drop_rate', type=float, default=0.0) help='dev dataset')
parser.add_argument('--random_seed', type=int, default=123) parser.add_argument(
'--testset',
nargs='+',
help='test dataset')
parser.add_argument(
'--vocab_dir',
help='dict')
parser.add_argument(
'--max_p_num',
type=int,
default=5)
parser.add_argument(
'--max_a_len',
type=int,
default=200)
parser.add_argument(
'--max_p_len',
type=int,
default=500)
parser.add_argument(
'--max_q_len',
type=int,
default=9)
parser.add_argument(
'--doc_num',
type=int,
default=5)
parser.add_argument(
'--para_print',
action='store_true')
parser.add_argument(
'--drop_rate',
type=float, default=0.0)
parser.add_argument(
'--random_seed',
type=int,
default=123)
parser.add_argument( parser.add_argument(
'--log_path', '--log_path',
help='path of the log file. If not set, logs are printed to console') help='path of the log file. If not set, logs are printed to console')
parser.add_argument(
'--result_dir',
default='../data/results/',
help='the dir to output the results')
parser.add_argument(
'--result_name',
default='test_result',
help='the file name of the results')
args = parser.parse_args() args = parser.parse_args()
return args return args
#!/bin/bash
# ==============================================================================
# Copyright 2017 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
if [[ -d preprocessed ]] && [[ -d raw ]]; then
echo "data exist"
exit 0
else
wget -c https://aipedataset.cdn.bcebos.com/dureader/dureader_raw.zip
wget -c https://aipedataset.cdn.bcebos.com/dureader/dureader_preprocessed.zip
fi
if md5sum --status -c md5sum.txt; then
unzip dureader_raw.zip
unzip dureader_preprocessed.zip
else
echo "download data error!" >> /dev/stderr
exit 1
fi
50633b5e5fda12d86e825a5c738d0ca8 dureader_raw.zip
7a4c28026f7dc94e8135d17203c63664 dureader_preprocessed.zip
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import time
import os
import random
import json
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
import sys
if sys.version[0] == '2':
reload(sys)
sys.setdefaultencoding("utf-8")
sys.path.append('..')
from args import *
import rc_model
from dataset import BRCDataset
import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
def prepare_batch_input(insts, args):
doc_num = args.doc_num
batch_size = len(insts['raw_data'])
new_insts = []
for i in range(batch_size):
p_id = []
q_id = []
p_ids = []
q_ids = []
p_len = 0
for j in range(i * doc_num, (i + 1) * doc_num):
p_ids.append(insts['passage_token_ids'][j])
p_id = p_id + insts['passage_token_ids'][j]
q_ids.append(insts['question_token_ids'][j])
q_id = q_id + insts['question_token_ids'][j]
p_len = len(p_id)
def _get_label(idx, ref_len):
ret = [0.0] * ref_len
if idx >= 0 and idx < ref_len:
ret[idx] = 1.0
return [[x] for x in ret]
start_label = _get_label(insts['start_id'][i], p_len)
end_label = _get_label(insts['end_id'][i], p_len)
new_inst = q_ids + [start_label, end_label] + p_ids
new_insts.append(new_inst)
return new_insts
def LodTensor_Array(lod_tensor):
lod = lod_tensor.lod()
array = np.array(lod_tensor)
new_array = []
for i in range(len(lod[0]) - 1):
new_array.append(array[lod[0][i]:lod[0][i + 1]])
return new_array
def print_para(train_prog, train_exe, logger, args):
if args.para_print:
param_list = train_prog.block(0).all_parameters()
param_name_list = [p.name for p in param_list]
num_sum = 0
for p_name in param_name_list:
p_array = np.array(train_exe.scope.find_var(p_name).get_tensor())
param_num = np.prod(p_array.shape)
num_sum = num_sum + param_num
logger.info("param: {0}, mean={1} max={2} min={3} num={4} {5}".format(
p_name,
p_array.mean(),
p_array.max(), p_array.min(), p_array.shape, param_num))
logger.info("total param num: {0}".format(num_sum))
def find_best_answer_for_passage(start_probs, end_probs, passage_len, args):
"""
Finds the best answer with the maximum start_prob * end_prob from a single passage
"""
if passage_len is None:
passage_len = len(start_probs)
else:
passage_len = min(len(start_probs), passage_len)
best_start, best_end, max_prob = -1, -1, 0
for start_idx in range(passage_len):
for ans_len in range(args.max_a_len):
end_idx = start_idx + ans_len
if end_idx >= passage_len:
continue
prob = start_probs[start_idx] * end_probs[end_idx]
if prob > max_prob:
best_start = start_idx
best_end = end_idx
max_prob = prob
return (best_start, best_end), max_prob
def find_best_answer(sample, start_prob, end_prob, padded_p_len, args):
"""
Finds the best answer for a sample given start_prob and end_prob for each position.
This will call find_best_answer_for_passage because there are multiple passages in a sample
"""
best_p_idx, best_span, best_score = None, None, 0
for p_idx, passage in enumerate(sample['passages']):
if p_idx >= args.max_p_num:
continue
passage_len = min(args.max_p_len, len(passage['passage_tokens']))
answer_span, score = find_best_answer_for_passage(
start_prob[p_idx * padded_p_len:(p_idx + 1) * padded_p_len],
end_prob[p_idx * padded_p_len:(p_idx + 1) * padded_p_len],
passage_len, args)
if score > best_score:
best_score = score
best_p_idx = p_idx
best_span = answer_span
if best_p_idx is None or best_span is None:
best_answer = ''
else:
best_answer = ''.join(sample['passages'][best_p_idx]['passage_tokens'][
best_span[0]:best_span[1] + 1])
return best_answer
def validation(inference_program, avg_cost, s_probs, e_probs, feed_order,
place, vocab, brc_data, logger, args):
"""
"""
parallel_executor = fluid.ParallelExecutor(
main_program=inference_program,
use_cuda=bool(args.use_gpu), loss_name=avg_cost.name)
print_para(inference_program, parallel_executor,
logger, args)
# Use test set as validation each pass
total_loss = 0.0
count = 0
pred_answers, ref_answers = [], []
val_feed_list = [
inference_program.global_block().var(var_name)
for var_name in feed_order
]
val_feeder = fluid.DataFeeder(val_feed_list, place)
pad_id = vocab.get_id(vocab.pad_token)
dev_batches = brc_data.gen_mini_batches(
'dev', args.batch_size, pad_id, shuffle=False)
for batch_id, batch in enumerate(dev_batches, 1):
feed_data = prepare_batch_input(batch, args)
val_fetch_outs = parallel_executor.run(
feed=val_feeder.feed(feed_data),
fetch_list=[avg_cost.name, s_probs.name, e_probs.name],
return_numpy=False)
total_loss += np.array(val_fetch_outs[0])[0]
start_probs = LodTensor_Array(val_fetch_outs[1])
end_probs = LodTensor_Array(val_fetch_outs[2])
count += len(batch['raw_data'])
padded_p_len = len(batch['passage_token_ids'][0])
for sample, start_prob, end_prob in zip(batch['raw_data'], start_probs,
end_probs):
best_answer = find_best_answer(sample, start_prob, end_prob,
padded_p_len, args)
pred_answers.append({
'question_id': sample['question_id'],
'question_type': sample['question_type'],
'answers': [best_answer],
'entity_answers': [[]],
'yesno_answers': []
})
if 'answers' in sample:
ref_answers.append({
'question_id': sample['question_id'],
'question_type': sample['question_type'],
'answers': sample['answers'],
'entity_answers': [[]],
'yesno_answers': []
})
if args.result_dir is not None and args.result_name is not None:
result_file = os.path.join(args.result_dir, args.result_name + '.json')
with open(result_file, 'w') as fout:
for pred_answer in pred_answers:
fout.write(json.dumps(pred_answer, ensure_ascii=False) + '\n')
logger.info('Saving {} results to {}'.format(args.result_name, result_file))
ave_loss = 1.0 * total_loss / count
# compute the bleu and rouge scores if reference answers is provided
if len(ref_answers) > 0:
pred_dict, ref_dict = {}, {}
for pred, ref in zip(pred_answers, ref_answers):
question_id = ref['question_id']
if len(ref['answers']) > 0:
pred_dict[question_id] = normalize(pred['answers'])
ref_dict[question_id] = normalize(ref['answers'])
bleu_rouge = compute_bleu_rouge(pred_dict, ref_dict)
else:
bleu_rouge = None
return ave_loss, bleu_rouge
def train(logger, args):
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
args.trainset, args.devset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
main_program.random_seed=args.random_seed
startup_prog.random_seed=args.random_seed
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, feed_order = rc_model.rc_model(
args.hidden_size,
vocab,
args)
# clone from default main program and use it as the validation program
inference_program = main_program.clone(for_test=True)
# build optimizer
if args.optim == 'sgd':
optimizer = fluid.optimizer.SGD(learning_rate=args.learning_rate)
elif args.optim == 'adam':
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
elif args.optim == 'rprop':
optimizer = fluid.optimizer.RMSPropOptimizer(
learning_rate=args.learning_rate)
else:
logger.error('Unsupported optimizer: {}'.format(args.optim))
exit(-1)
optimizer.minimize(avg_cost)
# initialize parameters
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(exe, args.load_dir, main_program=main_program)
else:
exe.run(startup_prog)
embedding_para = fluid.global_scope().find_var(
'embedding_para').get_tensor()
embedding_para.set(vocab.embeddings.astype(np.float32), place)
# prepare data
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
logger.info('Training the model...')
parallel_executor = fluid.ParallelExecutor(
main_program=main_program,
use_cuda=bool(args.use_gpu), loss_name=avg_cost.name)
print_para(main_program, parallel_executor,
logger, args)
for pass_id in range(1, args.pass_num + 1):
pass_start_time = time.time()
pad_id = vocab.get_id(vocab.pad_token)
train_batches = brc_data.gen_mini_batches(
'train', args.batch_size, pad_id, shuffle=True)
log_every_n_batch, n_batch_loss = args.log_interval, 0
total_num, total_loss = 0, 0
for batch_id, batch in enumerate(train_batches, 1):
input_data_dict = prepare_batch_input(batch, args)
fetch_outs = parallel_executor.run(
feed=feeder.feed(input_data_dict),
fetch_list=[avg_cost.name],
return_numpy=False)
cost_train = np.array(fetch_outs[0])[0]
total_num += len(batch['raw_data'])
n_batch_loss += cost_train
total_loss += cost_train * len(batch['raw_data'])
if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
print_para(main_program,
parallel_executor, logger, args)
logger.info('Average loss from batch {} to {} is {}'.format(
batch_id - log_every_n_batch + 1, batch_id, "%.10f" % (
n_batch_loss / log_every_n_batch)))
n_batch_loss = 0
if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs,
feed_order, place, vocab, brc_data, logger, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
pass_end_time = time.time()
logger.info('Evaluating the model after epoch {}'.format(pass_id))
if brc_data.dev_set is not None:
eval_loss, bleu_rouge = validation(inference_program, avg_cost,
s_probs, e_probs, feed_order,
place, vocab, brc_data, logger, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
else:
logger.warning(
'No dev set is loaded for evaluation in the dataset!')
time_consumed = pass_end_time - pass_start_time
logger.info('Average train loss for epoch {} is {}'.format(
pass_id, "%.10f" % (1.0 * total_loss / total_num)))
if pass_id % args.save_interval == 0:
model_path = os.path.join(args.save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(
executor=exe, dirname=model_path, main_program=main_program)
def evaluate(logger, args):
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
dev_files=args.devset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
main_program.random_seed=args.random_seed
startup_prog.random_seed=args.random_seed
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, feed_order = rc_model.rc_model(
args.hidden_size,
vocab,
args)
# initialize parameters
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(exe, args.load_dir, main_program=main_program)
else:
logger.error('No model file to load ...')
return
# prepare data
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
eval_loss, bleu_rouge = validation(
main_program, avg_cost, s_probs, e_probs,
feed_order, place, vocab, brc_data, logger, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
logger.info('Predicted answers are saved to {}'.format(os.path.join(args.result_dir)))
def predict(logger, args):
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
dev_files=args.testset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
main_program.random_seed=args.random_seed
startup_prog.random_seed=args.random_seed
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, feed_order = rc_model.rc_model(
args.hidden_size,
vocab,
args)
# initialize parameters
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(exe, args.load_dir, main_program=main_program)
else:
logger.error('No model file to load ...')
return
# prepare data
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
eval_loss, bleu_rouge = validation(
main_program, avg_cost, s_probs, e_probs,
feed_order, place, vocab, brc_data, logger, args)
if __name__ == '__main__':
args = parse_args()
random.seed(args.random_seed)
np.random.seed(args.random_seed)
logger = logging.getLogger("brc")
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
args = parse_args()
logger.info('Running with args : {}'.format(args))
if args.train:
train(logger, args)
if args.evaluate:
evaluate(logger, args)
if args.predict:
predict(logger, args)
python train.py \ python run.py \
--trainset 'data/preprocessed/trainset/search.train.json' \ --trainset 'data/preprocessed/trainset/search.train.json' \
'data/preprocessed/trainset/zhidao.train.json' \ 'data/preprocessed/trainset/zhidao.train.json' \
--devset 'data/preprocessed/devset/search.dev.json' \ --devset 'data/preprocessed/devset/search.dev.json' \
...@@ -17,4 +17,6 @@ python train.py \ ...@@ -17,4 +17,6 @@ python train.py \
--max_p_len 500 \ --max_p_len 500 \
--max_q_len 60 \ --max_q_len 60 \
--max_a_len 200 \ --max_a_len 200 \
--drop_rate 0.2 --drop_rate 0.2 \
--train \
--test
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册