未验证 提交 6788ab2b 编写于 作者: J jeff41404 提交者: GitHub

clean hapi notes, clean eager_run and modify num_labels to num_classes (#5045)

上级 62e732cf
......@@ -150,8 +150,6 @@ def parse_args():
)
parser.add_argument(
"--seed", default=42, type=int, help="random seed for initialization")
parser.add_argument(
"--eager_run", default=True, type=eval, help="Use dygraph mode.")
parser.add_argument(
"--n_gpu",
default=1,
......@@ -255,7 +253,6 @@ def convert_example(example,
def do_train(args):
paddle.enable_static() if not args.eager_run else None
paddle.set_device("gpu" if args.n_gpu else "cpu")
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
......@@ -324,10 +321,10 @@ def do_train(args):
num_workers=0,
return_list=True)
num_labels = 1 if train_dataset.get_labels() == None else len(
num_classes = 1 if train_dataset.get_labels() == None else len(
train_dataset.get_labels())
model = model_class.from_pretrained(
args.model_name_or_path, num_labels=num_labels)
args.model_name_or_path, num_classes=num_classes)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
......@@ -362,15 +359,6 @@ def do_train(args):
metric = metric_class()
### TODO: use hapi
# trainer = paddle.hapi.Model(model)
# trainer.prepare(optimizer, loss_fct, paddle.metric.Accuracy())
# trainer.fit(train_data_loader,
# dev_data_loader,
# log_freq=args.logging_steps,
# epochs=args.num_train_epochs,
# save_dir=args.output_dir)
global_step = 0
tic_train = time.time()
for epoch in range(args.num_train_epochs):
......
......@@ -436,11 +436,11 @@ class ElectraGenerator(ElectraPretrainedModel):
class ElectraClassificationHead(nn.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, hidden_size, hidden_dropout_prob, num_labels):
def __init__(self, hidden_size, hidden_dropout_prob, num_classes):
super(ElectraClassificationHead, self).__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
self.out_proj = nn.Linear(hidden_size, num_labels)
self.out_proj = nn.Linear(hidden_size, num_classes)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
......@@ -453,13 +453,13 @@ class ElectraClassificationHead(nn.Layer):
class ElectraForSequenceClassification(ElectraPretrainedModel):
def __init__(self, electra, num_labels):
def __init__(self, electra, num_classes):
super(ElectraForSequenceClassification, self).__init__()
self.num_labels = num_labels
self.num_classes = num_classes
self.electra = electra
self.classifier = ElectraClassificationHead(
self.electra.config["hidden_size"],
self.electra.config["hidden_dropout_prob"], self.num_labels)
self.electra.config["hidden_dropout_prob"], self.num_classes)
self.init_weights()
......@@ -478,13 +478,13 @@ class ElectraForSequenceClassification(ElectraPretrainedModel):
class ElectraForTokenClassification(ElectraPretrainedModel):
def __init__(self, electra, num_labels):
def __init__(self, electra, num_classes):
super(ElectraForTokenClassification, self).__init__()
self.num_labels = num_labels
self.num_classes = num_classes
self.electra = electra
self.dropout = nn.Dropout(self.electra.config["hidden_dropout_prob"])
self.classifier = nn.Linear(self.electra.config["hidden_size"],
self.num_labels)
self.num_classes)
self.init_weights()
def forward(self,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册