# Simple Baselines for Human Pose Estimation in Fluid
## Introduction
This is a simple demonstration of re-implementation in [PaddlePaddle.Fluid](http://www.paddlepaddle.org/en) for the paper [Simple Baselines for Human Pose Estimation and Tracking](https://arxiv.org/abs/1804.06208)(ECCV'18) from MSRA.
This is a simple demonstration of re-implementation in [PaddlePaddle.Fluid](http://www.paddlepaddle.org/en) for the paper [Simple Baselines for Human Pose Estimation and Tracking](https://arxiv.org/abs/1804.06208)(ECCV'18) from MSRA.
![demo](demo.gif)
...
...
@@ -10,7 +10,7 @@ This is a simple demonstration of re-implementation in [PaddlePaddle.Fluid](http
## Requirements
- Python == 2.7 or 3.6
- PaddlePaddle >= 1.1.0
- PaddlePaddle >= 1.1.0
- opencv-python >= 3.3
### Notes:
...
...
@@ -23,7 +23,7 @@ The code is developed and tested under 4 Tesla K40/P40 GPUS cards on CentOS with
## Results on MPII Val
| Arch | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean | Mean@0.1| Models |
Downloading the checkpoints of Pose-ResNet-50 trained on MPII dataset from [here](https://paddlemodels.bj.bcebos.com/pose/pose-resnet50-mpii-384x384.tar.gz). Extract it into the folder `checkpoints` under the directory root of this repo. Then run
If there are multiple persons in images, detectors such as [Faster R-CNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/rcnn), [SSD](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/object_detection) or others should be used first to crop them out. Because the simple baseline for human pose estimation is a top-down method.