Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
662b6c93
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
662b6c93
编写于
4月 02, 2018
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ParallelExecutor.
上级
caecc97a
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
62 addition
and
121 deletion
+62
-121
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+1
-1
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+28
-70
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+33
-50
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
662b6c93
...
...
@@ -4,7 +4,7 @@ class TrainTaskConfig(object):
pass_num
=
2
# number of sequences contained in a mini-batch.
batch_size
=
32
batch_size
=
64
# the hyper params for Adam optimizer.
learning_rate
=
0.001
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
662b6c93
...
...
@@ -387,60 +387,34 @@ def transformer(
src_pad_idx
,
trg_pad_idx
,
pos_pad_idx
,
):
# The shapes here act as placeholder.
# The shapes set here is to pass the infer-shape in compile time. The actual
# shape of src_word in run time is:
# [batch_size * max_src_length_in_a_batch, 1].
src_word
=
layers
.
data
(
name
=
input_data_names
[
0
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of src_pos in runtime is:
# [batch_size * max_src_length_in_a_batch, 1].
src_pos
=
layers
.
data
(
name
=
input_data_names
[
1
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of trg_word is in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
trg_word
=
layers
.
data
(
name
=
input_data_names
[
2
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of trg_pos in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
trg_pos
=
layers
.
data
(
name
=
input_data_names
[
3
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
# The actual shape of src_slf_attn_bias in runtime is:
# [batch_size, n_head, max_src_length_in_a_batch, max_src_length_in_a_batch].
# This input is used to remove attention weights on paddings.
src_slf_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
4
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
# The actual shape of trg_slf_attn_bias in runtime is:
# [batch_size, n_head, max_trg_length_in_batch, max_trg_length_in_batch].
# This is used to remove attention weights on paddings and subsequent words.
trg_slf_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
5
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
# The actual shape of trg_src_attn_bias in runtime is:
# [batch_size, n_head, max_trg_length_in_batch, max_src_length_in_batch].
# This is used to remove attention weights on paddings.
trg_src_attn_bias
=
layers
.
data
(
name
=
input_data_names
[
6
],
shape
=
[
batch_size
,
n_head
,
max_length
,
max_length
],
dtype
=
"float32"
,
append_batch_size
=
False
)
file_obj
=
fluid
.
layers
.
open_recordio_file
(
filename
=
'./wmt16.recordio'
,
shapes
=
[
[
batch_size
*
max_length
,
1
],
[
batch_size
*
max_length
,
1
],
[
batch_size
*
max_length
,
1
],
[
batch_size
*
max_length
,
1
],
[
batch_size
,
n_head
,
max_length
,
max_length
],
[
batch_size
,
n_head
,
max_length
,
max_length
],
[
batch_size
,
n_head
,
max_length
,
max_length
],
[
batch_size
*
max_length
,
1
],
[
batch_size
*
max_length
,
1
],
],
dtypes
=
[
'int64'
,
'int64'
,
'int64'
,
'int64'
,
'float32'
,
'float32'
,
'float32'
,
'int64'
,
'float32'
,
],
lod_levels
=
[
0
]
*
9
)
src_word
,
src_pos
,
trg_word
,
trg_pos
,
src_slf_attn_bias
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
gold
,
weights
=
fluid
.
layers
.
read_file
(
file_obj
)
enc_input
=
prepare_encoder
(
src_word
,
...
...
@@ -492,22 +466,6 @@ def transformer(
num_flatten_dims
=
2
),
shape
=
[
-
1
,
trg_vocab_size
],
act
=
"softmax"
)
# The actual shape of gold in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
gold
=
layers
.
data
(
name
=
input_data_names
[
7
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"int64"
,
append_batch_size
=
False
)
cost
=
layers
.
cross_entropy
(
input
=
predict
,
label
=
gold
)
# The actual shape of weights in runtime is:
# [batch_size * max_trg_length_in_a_batch, 1].
# Padding index do not contribute to the total loss. This Weight is used to
# cancel padding index in calculating the loss.
weights
=
layers
.
data
(
name
=
input_data_names
[
8
],
shape
=
[
batch_size
*
max_length
,
1
],
dtype
=
"float32"
,
append_batch_size
=
False
)
weighted_cost
=
cost
*
weights
return
layers
.
reduce_sum
(
weighted_cost
)
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
662b6c93
...
...
@@ -2,9 +2,10 @@ import numpy as np
import
sys
import
time
import
paddle
.v2
as
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.dataset.wmt16
as
wmt16
from
model
import
transformer
,
position_encoding_init
from
optim
import
LearningRateScheduler
...
...
@@ -12,8 +13,7 @@ from config import TrainTaskConfig, ModelHyperParams, \
pos_enc_param_names
,
input_data_names
def
prepare_batch_input
(
insts
,
input_data_names
,
src_pad_idx
,
trg_pad_idx
,
max_length
,
n_head
,
place
):
def
prepare_batch_input
(
insts
,
src_pad_idx
,
trg_pad_idx
,
n_head
):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias. Then, convert the numpy
...
...
@@ -28,9 +28,9 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
return_attn_bias
=
True
,
return_max_len
=
True
):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
return_list
=
[]
max_len
=
max
(
len
(
inst
)
for
inst
in
insts
)
inst_data
=
np
.
array
(
...
...
@@ -66,13 +66,6 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
return_list
+=
[
max_len
]
return
return_list
if
len
(
return_list
)
>
1
else
return_list
[
0
]
def
data_to_tensor
(
data_list
,
name_list
,
input_dict
,
place
):
assert
len
(
data_list
)
==
len
(
name_list
)
for
i
in
range
(
len
(
name_list
)):
tensor
=
fluid
.
LoDTensor
()
tensor
.
set
(
data_list
[
i
],
place
)
input_dict
[
name_list
[
i
]]
=
tensor
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
__pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
is_target
=
False
)
trg_word
,
trg_pos
,
trg_slf_attn_bias
,
trg_max_len
=
__pad_batch_data
(
...
...
@@ -83,18 +76,13 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
False
,
False
,
False
)
lbl_weight
=
(
lbl_word
!=
trg_pad_idx
).
astype
(
"float32"
).
reshape
([
-
1
,
1
])
data_to_tensor
(
[
return
[
src_word
,
src_pos
,
trg_word
,
trg_pos
,
src_slf_attn_bias
,
trg_slf_attn_bias
,
trg_src_attn_bias
,
lbl_word
,
lbl_weight
],
input_data_names
,
input_dict
,
place
)
return
input_dict
]
def
main
():
place
=
fluid
.
CUDAPlace
(
0
)
if
TrainTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
cost
=
transformer
(
ModelHyperParams
.
src_vocab_size
+
1
,
ModelHyperParams
.
trg_vocab_size
+
1
,
ModelHyperParams
.
max_length
+
1
,
...
...
@@ -104,11 +92,8 @@ def main():
ModelHyperParams
.
dropout
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
pos_pad_idx
)
lr_scheduler
=
LearningRateScheduler
(
ModelHyperParams
.
d_model
,
TrainTaskConfig
.
warmup_steps
,
place
,
TrainTaskConfig
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr_scheduler
.
learning_rate
,
learning_rate
=
TrainTaskConfig
.
learning_rate
,
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
...
...
@@ -121,26 +106,27 @@ def main():
buf_size
=
100000
),
batch_size
=
TrainTaskConfig
.
batch_size
)
# Initialize the parameters.
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
for
pos_enc_param_name
in
pos_enc_param_names
:
pos_enc_param
=
fluid
.
global_scope
().
find_var
(
pos_enc_param_name
).
get_tensor
()
pos_enc_param
.
set
(
position_encoding_init
(
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
d_model
),
place
)
def
fn
(
pass_id
,
batch_id
,
data
):
reader
=
paddle
.
batch
(
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
TrainTaskConfig
.
batch_size
)
with
fluid
.
recordio_writer
.
create_recordio_writer
(
"./wmt16.recordio"
)
as
writer
:
for
batch
in
reader
():
for
tensor
in
prepare_batch_input
(
batch
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
n_head
):
t
=
fluid
.
LoDTensor
()
t
.
set
(
tensor
,
fluid
.
CPUPlace
())
writer
.
append_tensor
(
t
)
writer
.
complete_append_tensor
()
exe
=
fluid
.
ParallelExecutor
(
loss_name
=
cost
.
name
,
use_cuda
=
True
)
def
fn
(
pass_id
,
batch_id
):
t1
=
time
.
time
()
data_input
=
prepare_batch_input
(
data
,
input_data_names
,
ModelHyperParams
.
src_pad_idx
,
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
,
place
)
lr_scheduler
.
update_learning_rate
(
data_input
)
outs
=
exe
.
run
(
fluid
.
framework
.
default_main_program
(),
feed
=
data_input
,
fetch_list
=
[
cost
],
use_program_cache
=
True
)
outs
=
exe
.
run
([
cost
.
name
])
cost_val
=
np
.
array
(
outs
[
0
])
print
(
"pass_id = "
+
str
(
pass_id
)
+
" batch = "
+
str
(
batch_id
)
+
" cost = "
+
str
(
cost_val
))
...
...
@@ -151,16 +137,13 @@ def main():
total_time
=
0.0
count
=
0
for
pass_id
in
xrange
(
TrainTaskConfig
.
pass_num
):
for
batch_id
,
data
in
enumerate
(
train_data
()):
# The current program desc is coupled with batch_size, thus all
# mini-batches must have the same number of instances currently.
if
len
(
data
)
!=
TrainTaskConfig
.
batch_size
:
continue
if
pass_id
==
0
and
batch_id
>=
10
and
batch_id
<
12
:
for
batch_id
in
xrange
(
10000
):
if
batch_id
==
1
:
with
profiler
.
profiler
(
'All'
,
'total'
,
'/tmp/transformer'
):
duration
=
fn
(
pass_id
,
batch_id
,
data
)
duration
=
fn
(
pass_id
,
batch_id
)
duration
=
fn
(
pass_id
,
batch_id
)
else
:
duration
=
fn
(
pass_id
,
batch_id
,
data
)
duration
=
fn
(
pass_id
,
batch_id
)
count
+=
1
total_time
+=
duration
print
(
"avg: "
+
str
(
total_time
/
count
)
+
" cur: "
+
str
(
duration
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录