未验证 提交 6625a04f 编写于 作者: S SunGaofeng 提交者: GitHub

Merge pull request #1 from PaddlePaddle/develop

update to paddle paddle/models
paddle/operators/check_t.save
paddle/operators/check_tensor.ls
paddle/operators/tensor.save
python/paddle/v2/fluid/tests/book/image_classification_resnet.inference.model/
python/paddle/v2/fluid/tests/book/image_classification_vgg.inference.model/
python/paddle/v2/fluid/tests/book/label_semantic_roles.inference.model/
*.DS_Store *.DS_Store
*.vs *.vs
build/
build_doc/
*.user *.user
.vscode
.idea
.project
.cproject
.pydevproject
.settings/
*.pyc *.pyc
CMakeSettings.json
Makefile
.test_env/
third_party/
*~ *~
bazel-*
third_party/
build_*
# clion workspace.
cmake-build-*
model_test
\ No newline at end of file
...@@ -16,54 +16,56 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化 ...@@ -16,54 +16,56 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化
## PaddleCV ## PaddleCV
模型|简介|模型优势|参考论文 模型|简介|模型优势|参考论文
--|:--:|:--:|:--: --|:--:|:--:|:--:
[AlexNet](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类经典模型|首次在CNN中成功的应用了ReLU、Dropout和LRN,并使用GPU进行运算加速|[ImageNet Classification with Deep Convolutional Neural Networks](https://www.researchgate.net/publication/267960550_ImageNet_Classification_with_Deep_Convolutional_Neural_Networks) [AlexNet](./fluid/PaddleCV/image_classification/models)|图像分类经典模型|首次在CNN中成功的应用了ReLU、Dropout和LRN,并使用GPU进行运算加速|[ImageNet Classification with Deep Convolutional Neural Networks](https://www.researchgate.net/publication/267960550_ImageNet_Classification_with_Deep_Convolutional_Neural_Networks)
[VGG](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类经典模型|在AlexNet的基础上使用3*3小卷积核,增加网络深度,具有很好的泛化能力|[Very Deep ConvNets for Large-Scale Inage Recognition](https://arxiv.org/pdf/1409.1556.pdf) [VGG](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类经典模型|在AlexNet的基础上使用3*3小卷积核,增加网络深度,具有很好的泛化能力|[Very Deep ConvNets for Large-Scale Inage Recognition](https://arxiv.org/pdf/1409.1556.pdf)
[GoogleNet](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类经典模型|在不增加计算负载的前提下增加了网络的深度和宽度,性能更加优越|[Going deeper with convolutions](https://ieeexplore.ieee.org/document/7298594) [GoogleNet](./fluid/PaddleCV/image_classification/models)|图像分类经典模型|在不增加计算负载的前提下增加了网络的深度和宽度,性能更加优越|[Going deeper with convolutions](https://ieeexplore.ieee.org/document/7298594)
[ResNet](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|残差网络|引入了新的残差结构,解决了随着网络加深,准确率下降的问题|[Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) [ResNet](./fluid/PaddleCV/image_classification/models)|残差网络|引入了新的残差结构,解决了随着网络加深,准确率下降的问题|[Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
[Inception-v4](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类经典模型|更加deeper和wider的inception结构|[Inception-ResNet and the Impact of Residual Connections on Learning](http://arxiv.org/abs/1602.07261) [Inception-v4](./fluid/PaddleCV/image_classification/models)|图像分类经典模型|更加deeper和wider的inception结构|[Inception-ResNet and the Impact of Residual Connections on Learning](http://arxiv.org/abs/1602.07261)
[MobileNet](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|轻量级网络模型|为移动和嵌入式设备提出的高效模型|[MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) [MobileNet](./fluid/PaddleCV/image_classification/models)|轻量级网络模型|为移动和嵌入式设备提出的高效模型|[MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861)
[DPN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类模型|结合了DenseNet和ResNeXt的网络结构,对图像分类效果有所提升|[Dual Path Networks](https://arxiv.org/abs/1707.01629) [DPN](./fluid/PaddleCV/image_classification/models)|图像分类模型|结合了DenseNet和ResNeXt的网络结构,对图像分类效果有所提升|[Dual Path Networks](https://arxiv.org/abs/1707.01629)
[SE-ResNeXt](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类模型|ResNeXt中加入了SE block,提高了模型准确率|[Squeeze-and-excitation networks](https://arxiv.org/abs/1709.01507) [SE-ResNeXt](./fluid/PaddleCV/image_classification/models)|图像分类模型|ResNeXt中加入了SE block,提高了模型准确率|[Squeeze-and-excitation networks](https://arxiv.org/abs/1709.01507)
[SSD](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/object_detection/README_cn.md)|单阶段目标检测器|在不同尺度的特征图上检测对应尺度的目标,可以方便地插入到任何一种标准卷积网络中|[SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325) [SSD](./fluid/PaddleCV/object_detection/README_cn.md)|单阶段目标检测器|在不同尺度的特征图上检测对应尺度的目标,可以方便地插入到任何一种标准卷积网络中|[SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325)
[Face Detector: PyramidBox](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/face_detection/README_cn.md)|基于SSD的单阶段人脸检测器|利用上下文信息解决困难人脸的检测问题,网络表达能力高,鲁棒性强|[PyramidBox: A Context-assisted Single Shot Face Detector](https://arxiv.org/pdf/1803.07737.pdf) [Face Detector: PyramidBox](./fluid/PaddleCV/face_detection/README_cn.md)|基于SSD的单阶段人脸检测器|利用上下文信息解决困难人脸的检测问题,网络表达能力高,鲁棒性强|[PyramidBox: A Context-assisted Single Shot Face Detector](https://arxiv.org/pdf/1803.07737.pdf)
[Faster RCNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/faster_rcnn/README_cn.md)|典型的两阶段目标检测器|创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,建议框数目减少,质量提高|[Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497) [Faster RCNN](./fluid/PaddleCV/rcnn/README_cn.md)|典型的两阶段目标检测器|创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,建议框数目减少,质量提高|[Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497)
[ICNet](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/icnet)|图像实时语义分割模型|即考虑了速度,也考虑了准确性,在高分辨率图像的准确性和低复杂度网络的效率之间获得平衡|[ICNet for Real-Time Semantic Segmentation on High-Resolution Images](https://arxiv.org/abs/1704.08545) [Mask RCNN](./fluid/PaddleCV/rcnn/README_cn.md)|基于Faster RCNN模型的经典实例分割模型|在原有Faster RCNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕。|[Mask R-CNN](https://arxiv.org/abs/1703.06870)
[DCGAN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/gan/c_gan)|图像生成模型|深度卷积生成对抗网络,将GAN和卷积网络结合起来,以解决GAN训练不稳定的问题|[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/pdf/1511.06434.pdf) [ICNet](./fluid/PaddleCV/icnet)|图像实时语义分割模型|即考虑了速度,也考虑了准确性,在高分辨率图像的准确性和低复杂度网络的效率之间获得平衡|[ICNet for Real-Time Semantic Segmentation on High-Resolution Images](https://arxiv.org/abs/1704.08545)
[ConditionalGAN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/gan/c_gan)|图像生成模型|条件生成对抗网络,一种带条件约束的GAN,使用额外信息对模型增加条件,可以指导数据生成过程|[Conditional Generative Adversarial Nets](https://arxiv.org/abs/1411.1784) [DCGAN](./fluid/PaddleCV/gan/c_gan)|图像生成模型|深度卷积生成对抗网络,将GAN和卷积网络结合起来,以解决GAN训练不稳定的问题|[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/pdf/1511.06434.pdf)
[CycleGAN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/gan/cycle_gan)|图片转化模型|自动将某一类图片转换成另外一类图片,可用于风格迁移|[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593) [ConditionalGAN](./fluid/PaddleCV/gan/c_gan)|图像生成模型|条件生成对抗网络,一种带条件约束的GAN,使用额外信息对模型增加条件,可以指导数据生成过程|[Conditional Generative Adversarial Nets](https://arxiv.org/abs/1411.1784)
[CRNN-CTC模型](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/ocr_recognition)|场景文字识别模型|使用CTC model识别图片中单行英文字符|[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks](https://www.researchgate.net/publication/221346365_Connectionist_temporal_classification_Labelling_unsegmented_sequence_data_with_recurrent_neural_'networks) [CycleGAN](./fluid/PaddleCV/gan/cycle_gan)|图片转化模型|自动将某一类图片转换成另外一类图片,可用于风格迁移|[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593)
[Attention模型](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/ocr_recognition)|场景文字识别模型|使用attention 识别图片中单行英文字符|[Recurrent Models of Visual Attention](https://arxiv.org/abs/1406.6247) [CRNN-CTC模型](./fluid/PaddleCV/ocr_recognition)|场景文字识别模型|使用CTC model识别图片中单行英文字符|[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks](https://www.researchgate.net/publication/221346365_Connectionist_temporal_classification_Labelling_unsegmented_sequence_data_with_recurrent_neural_'networks)
[Attention模型](./fluid/PaddleCV/ocr_recognition)|场景文字识别模型|使用attention 识别图片中单行英文字符|[Recurrent Models of Visual Attention](https://arxiv.org/abs/1406.6247)
[Metric Learning](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/metric_learning)|度量学习模型|能够用于分析对象时间的关联、比较关系,可应用于辅助分类、聚类问题,也广泛用于图像检索、人脸识别等领域|- [Metric Learning](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/metric_learning)|度量学习模型|能够用于分析对象时间的关联、比较关系,可应用于辅助分类、聚类问题,也广泛用于图像检索、人脸识别等领域|-
[TSN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/video_classification)|视频分类模型|基于长范围时间结构建模,结合了稀疏时间采样策略和视频级监督来保证使用整段视频时学习得有效和高效|[Temporal Segment Networks: Towards Good Practices for Deep Action Recognition](https://arxiv.org/abs/1608.00859) [TSN](./fluid/PaddleCV/video_classification)|视频分类模型|基于长范围时间结构建模,结合了稀疏时间采样策略和视频级监督来保证使用整段视频时学习得有效和高效|[Temporal Segment Networks: Towards Good Practices for Deep Action Recognition](https://arxiv.org/abs/1608.00859)
[caffe2fluid](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/caffe2fluid)|将Caffe模型转换为Paddle Fluid配置和模型文件工具|-|- [视频模型库](./fluid/PaddleCV/video)|视频模型库|给开发者提供基于PaddlePaddle的便捷、高效的使用深度学习算法解决视频理解、视频编辑、视频生成等一系列模型||
[caffe2fluid](./fluid/PaddleCV/caffe2fluid)|将Caffe模型转换为Paddle Fluid配置和模型文件工具|-|-
## PaddleNLP ## PaddleNLP
模型|简介|模型优势|参考论文 模型|简介|模型优势|参考论文
--|:--:|:--:|:--: --|:--:|:--:|:--:
[Transformer](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleNLP/neural_machine_translation/transformer/README_cn.md)|机器翻译模型|基于self-attention,计算复杂度小,并行度高,容易学习长程依赖,翻译效果更好|[Attention Is All You Need](https://arxiv.org/abs/1706.03762) [Transformer](./fluid/PaddleNLP/neural_machine_translation/transformer/README_cn.md)|机器翻译模型|基于self-attention,计算复杂度小,并行度高,容易学习长程依赖,翻译效果更好|[Attention Is All You Need](https://arxiv.org/abs/1706.03762)
[LAC](https://github.com/baidu/lac/blob/master/README.md)|联合的词法分析模型|能够整体性地完成中文分词、词性标注、专名识别任务|[Chinese Lexical Analysis with Deep Bi-GRU-CRF Network](https://arxiv.org/abs/1807.01882) [LAC](https://github.com/baidu/lac/blob/master/README.md)|联合的词法分析模型|能够整体性地完成中文分词、词性标注、专名识别任务|[Chinese Lexical Analysis with Deep Bi-GRU-CRF Network](https://arxiv.org/abs/1807.01882)
[Senta](https://github.com/baidu/Senta/blob/master/README.md)|情感倾向分析模型集|百度AI开放平台中情感倾向分析模型|- [Senta](https://github.com/baidu/Senta/blob/master/README.md)|情感倾向分析模型集|百度AI开放平台中情感倾向分析模型|-
[DAM](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleNLP/deep_attention_matching_net)|语义匹配模型|百度自然语言处理部发表于ACL-2018的工作,用于检索式聊天机器人多轮对话中应答的选择|[Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network](http://aclweb.org/anthology/P18-1103) [DAM](./fluid/PaddleNLP/deep_attention_matching_net)|语义匹配模型|百度自然语言处理部发表于ACL-2018的工作,用于检索式聊天机器人多轮对话中应答的选择|[Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network](http://aclweb.org/anthology/P18-1103)
[SimNet](https://github.com/baidu/AnyQ/blob/master/tools/simnet/train/paddle/README.md)|语义匹配框架|使用SimNet构建出的模型可以便捷的加入AnyQ系统中,增强AnyQ系统的语义匹配能力|- [SimNet](https://github.com/baidu/AnyQ/blob/master/tools/simnet/train/paddle/README.md)|语义匹配框架|使用SimNet构建出的模型可以便捷的加入AnyQ系统中,增强AnyQ系统的语义匹配能力|-
[DuReader](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleNLP/machine_reading_comprehension/README.md)|阅读理解模型|百度MRC数据集上的机器阅读理解模型|- [DuReader](./fluid/PaddleNLP/machine_reading_comprehension/README.md)|阅读理解模型|百度MRC数据集上的机器阅读理解模型|-
[Bi-GRU-CRF](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleNLP/sequence_tagging_for_ner/README.md)|命名实体识别|结合了CRF和双向GRU的命名实体识别模型|- [Bi-GRU-CRF](./fluid/PaddleNLP/sequence_tagging_for_ner/README.md)|命名实体识别|结合了CRF和双向GRU的命名实体识别模型|-
## PaddleRec ## PaddleRec
模型|简介|模型优势|参考论文 模型|简介|模型优势|参考论文
--|:--:|:--:|:--: --|:--:|:--:|:--:
[TagSpace](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleRec/tagspace)|文本及标签的embedding表示学习模型|应用于工业级的标签推荐,具体应用场景有feed新闻标签推荐等|[#TagSpace: Semantic embeddings from hashtags](https://www.bibsonomy.org/bibtex/0ed4314916f8e7c90d066db45c293462) [TagSpace](./fluid/PaddleRec/tagspace)|文本及标签的embedding表示学习模型|应用于工业级的标签推荐,具体应用场景有feed新闻标签推荐等|[#TagSpace: Semantic embeddings from hashtags](https://www.bibsonomy.org/bibtex/0ed4314916f8e7c90d066db45c293462)
[GRU4Rec](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleRec/gru4rec)|个性化推荐模型|首次将RNN(GRU)运用于session-based推荐,相比传统的KNN和矩阵分解,效果有明显的提升|[Session-based Recommendations with Recurrent Neural Networks](https://arxiv.org/abs/1511.06939) [GRU4Rec](./fluid/PaddleRec/gru4rec)|个性化推荐模型|首次将RNN(GRU)运用于session-based推荐,相比传统的KNN和矩阵分解,效果有明显的提升|[Session-based Recommendations with Recurrent Neural Networks](https://arxiv.org/abs/1511.06939)
[SSR](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleRec/ssr)|序列语义检索推荐模型|使用参考论文中的思想,使用多种时间粒度进行用户行为预测|[Multi-Rate Deep Learning for Temporal Recommendation](https://dl.acm.org/citation.cfm?id=2914726) [SSR](./fluid/PaddleRec/ssr)|序列语义检索推荐模型|使用参考论文中的思想,使用多种时间粒度进行用户行为预测|[Multi-Rate Deep Learning for Temporal Recommendation](https://dl.acm.org/citation.cfm?id=2914726)
[DeepCTR](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleRec/ctr/README.cn.md)|点击率预估模型|只实现了DeepFM论文中介绍的模型的DNN部分,DeepFM会在其他例子中给出|[DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/abs/1703.04247) [DeepCTR](./fluid/PaddleRec/ctr/README.cn.md)|点击率预估模型|只实现了DeepFM论文中介绍的模型的DNN部分,DeepFM会在其他例子中给出|[DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/abs/1703.04247)
[Multiview-Simnet](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleRec/multiview_simnet)|个性化推荐模型|基于多元视图,将用户和项目的多个功能视图合并为一个统一模型|[A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems](http://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/frp1159-songA.pdf) [Multiview-Simnet](./fluid/PaddleRec/multiview_simnet)|个性化推荐模型|基于多元视图,将用户和项目的多个功能视图合并为一个统一模型|[A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems](http://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/frp1159-songA.pdf)
## Other Models ## Other Models
模型|简介|模型优势|参考论文 模型|简介|模型优势|参考论文
--|:--:|:--:|:--: --|:--:|:--:|:--:
[DeepASR](https://github.com/PaddlePaddle/models/blob/develop/fluid/DeepASR/README_cn.md)|语音识别系统|利用Fluid框架完成语音识别中声学模型的配置和训练,并集成 Kaldi 的解码器|- [DeepASR](./fluid/DeepASR/README_cn.md)|语音识别系统|利用Fluid框架完成语音识别中声学模型的配置和训练,并集成 Kaldi 的解码器|-
[DQN](https://github.com/PaddlePaddle/models/blob/develop/fluid/DeepQNetwork/README_cn.md)|深度Q网络|value based强化学习算法,第一个成功地将深度学习和强化学习结合起来的模型|[Human-level control through deep reinforcement learning](https://www.nature.com/articles/nature14236) [DQN](./fluid/DeepQNetwork/README_cn.md)|深度Q网络|value based强化学习算法,第一个成功地将深度学习和强化学习结合起来的模型|[Human-level control through deep reinforcement learning](https://www.nature.com/articles/nature14236)
[DoubleDQN](https://github.com/PaddlePaddle/models/blob/develop/fluid/DeepQNetwork/README_cn.md)|DQN的变体|将Double Q的想法应用在DQN上,解决过优化问题|[Font Size: Deep Reinforcement Learning with Double Q-Learning](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12389) [DoubleDQN](./fluid/DeepQNetwork/README_cn.md)|DQN的变体|将Double Q的想法应用在DQN上,解决过优化问题|[Font Size: Deep Reinforcement Learning with Double Q-Learning](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12389)
[DuelingDQN](https://github.com/PaddlePaddle/models/blob/develop/fluid/DeepQNetwork/README_cn.md)|DQN的变体|改进了DQN模型,提高了模型的性能|[Dueling Network Architectures for Deep Reinforcement Learning](http://proceedings.mlr.press/v48/wangf16.html) [DuelingDQN](./fluid/DeepQNetwork/README_cn.md)|DQN的变体|改进了DQN模型,提高了模型的性能|[Dueling Network Architectures for Deep Reinforcement Learning](http://proceedings.mlr.press/v48/wangf16.html)
## License ## License
This tutorial is contributed by [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) and licensed under the [Apache-2.0 license](LICENSE). This tutorial is contributed by [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) and licensed under the [Apache-2.0 license](LICENSE).
......
# LRC Local Rademachar Complexity Regularization
Regularization of Deep Neural Networks(DNNs) for the sake of improving their generalization capability is important and chllenging. This directory contains image classification model based on a novel regularizer rooted in Local Rademacher Complexity (LRC). We appreciate the contribution by [DARTS](https://arxiv.org/abs/1806.09055) for our research. The regularization by LRC and DARTS are combined in this model on CIFAR-10 dataset. Code accompanying the paper
> [An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity](https://arxiv.org/abs/1902.00873)\
> Yingzhen Yang, Xingjian Li, Jun Huan.\
> _arXiv:1902.00873_.
---
# Table of Contents
- [Installation](#installation)
- [Data preparation](#data-preparation)
- [Training](#training)
## Installation
Running sample code in this directory requires PaddelPaddle Fluid v.1.2.0 and later. If the PaddlePaddle on your device is lower than this version, please follow the instructions in [installation document](http://www.paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html#paddlepaddle) and make an update.
## Data preparation
When you want to use the cifar-10 dataset for the first time, you can download the dataset as:
sh ./dataset/download.sh
Please make sure your environment has an internet connection.
The dataset will be downloaded to `dataset/cifar/cifar-10-batches-py` in the same directory as the `train.py`. If automatic download fails, you can download cifar-10-python.tar.gz from https://www.cs.toronto.edu/~kriz/cifar.html and decompress it to the location mentioned above.
## Training
After data preparation, one can start the training step by:
python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
- Set ```export CUDA_VISIBLE_DEVICES=0``` to specifiy one GPU to train.
- For more help on arguments:
python train_mixup.py --help
**data reader introduction:**
* Data reader is defined in `reader.py`.
* Reshape the images to 32 * 32.
* In training stage, images are padding to 40 * 40 and cropped randomly to the original size.
* In training stage, images are horizontally random flipped.
* Images are standardized to (0, 1).
* In training stage, cutout images randomly.
* Shuffle the order of the input images during training.
**model configuration:**
* Use auxiliary loss and auxiliary\_weight=0.4.
* Use dropout and drop\_path\_prob=0.2.
* Set lrc\_loss\_lambda=0.7.
**training strategy:**
* Use momentum optimizer with momentum=0.9.
* Weight decay is 0.0003.
* Use cosine decay with init\_lr=0.025.
* Total epoch is 600.
* Use Xaiver initalizer to weight in conv2d, Constant initalizer to weight in batch norm and Normal initalizer to weight in fc.
* Initalize bias in batch norm and fc to zero constant and do not add bias to conv2d.
## Reference
- DARTS: Differentiable Architecture Search [`paper`](https://arxiv.org/abs/1806.09055)
- Differentiable architecture search in PyTorch [`code`](https://github.com/quark0/darts)
# LRC 局部Rademachar复杂度正则化
为了在深度神经网络中提升泛化能力,正则化的选择十分重要也具有挑战性。本目录包括了一种基于局部rademacher复杂度的新型正则(LRC)的图像分类模型。十分感谢[DARTS](https://arxiv.org/abs/1806.09055)模型对本研究提供的帮助。该模型将LRC正则和DARTS网络相结合,在CIFAR-10数据集中得到了很出色的效果。代码和文章一同发布
> [An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity](https://arxiv.org/abs/1902.00873)\
> Yingzhen Yang, Xingjian Li, Jun Huan.\
> _arXiv:1902.00873_.
---
# 内容
- [安装](#安装)
- [数据准备](#数据准备)
- [模型训练](#模型训练)
## 安装
在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.2.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html#paddlepaddle)中的说明来更新PaddlePaddle。
## 数据准备
第一次使用CIFAR-10数据集时,您可以通过如果命令下载:
sh ./dataset/download.sh
请确保您的环境有互联网连接。数据会下载到`train.py`同目录下的`dataset/cifar/cifar-10-batches-py`。如果下载失败,您可以自行从https://www.cs.toronto.edu/~kriz/cifar.html上下载cifar-10-python.tar.gz并解压到上述位置。
## 模型训练
数据准备好后,可以通过如下命令开始训练:
python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
- 通过设置 ```export CUDA_VISIBLE_DEVICES=0```指定单张GPU训练。
- 可选参数见:
python train_mixup.py --help
**数据读取器说明:**
* 数据读取器定义在`reader.py`
* 输入图像尺寸统一变换为32 * 32
* 训练时将图像填充为40 * 40然后随机剪裁为原输入图像大小
* 训练时图像随机水平翻转
* 对图像每个像素做归一化处理
* 训练时对图像做随机遮挡
* 训练时对输入图像做随机洗牌
**模型配置:**
* 使用辅助损失,辅助损失权重为0.4
* 使用dropout,随机丢弃率为0.2
* 设置lrc\_loss\_lambda为0.7
**训练策略:**
* 采用momentum优化算法训练,momentum=0.9
* 权重衰减系数为0.0001
* 采用正弦学习率衰减,初始学习率为0.025
* 总共训练600轮
* 对卷积权重采用Xaiver初始化,对batch norm权重采用固定初始化,对全连接层权重采用高斯初始化
* 对batch norm和全连接层偏差采用固定初始化,不对卷积设置偏差
## 引用
- DARTS: Differentiable Architecture Search [`论文`](https://arxiv.org/abs/1806.09055)
- Differentiable Architecture Search in PyTorch [`代码`](https://github.com/quark0/darts)
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR"
mkdir cifar
cd cifar
# Download the data.
echo "Downloading..."
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
# Extract the data.
echo "Extracting..."
tar zvxf cifar-10-python.tar.gz
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
PRIMITIVES = [
'none', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3',
'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5'
]
NASNet = Genotype(
normal=[
('sep_conv_5x5', 1),
('sep_conv_3x3', 0),
('sep_conv_5x5', 0),
('sep_conv_3x3', 0),
('avg_pool_3x3', 1),
('skip_connect', 0),
('avg_pool_3x3', 0),
('avg_pool_3x3', 0),
('sep_conv_3x3', 1),
('skip_connect', 1),
],
normal_concat=[2, 3, 4, 5, 6],
reduce=[
('sep_conv_5x5', 1),
('sep_conv_7x7', 0),
('max_pool_3x3', 1),
('sep_conv_7x7', 0),
('avg_pool_3x3', 1),
('sep_conv_5x5', 0),
('skip_connect', 3),
('avg_pool_3x3', 2),
('sep_conv_3x3', 2),
('max_pool_3x3', 1),
],
reduce_concat=[4, 5, 6], )
AmoebaNet = Genotype(
normal=[
('avg_pool_3x3', 0),
('max_pool_3x3', 1),
('sep_conv_3x3', 0),
('sep_conv_5x5', 2),
('sep_conv_3x3', 0),
('avg_pool_3x3', 3),
('sep_conv_3x3', 1),
('skip_connect', 1),
('skip_connect', 0),
('avg_pool_3x3', 1),
],
normal_concat=[4, 5, 6],
reduce=[
('avg_pool_3x3', 0),
('sep_conv_3x3', 1),
('max_pool_3x3', 0),
('sep_conv_7x7', 2),
('sep_conv_7x7', 0),
('avg_pool_3x3', 1),
('max_pool_3x3', 0),
('max_pool_3x3', 1),
('conv_7x1_1x7', 0),
('sep_conv_3x3', 5),
],
reduce_concat=[3, 4, 6])
DARTS_V1 = Genotype(
normal=[('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 0),
('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_3x3', 1),
('sep_conv_3x3', 0), ('skip_connect', 2)],
normal_concat=[2, 3, 4, 5],
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2),
('max_pool_3x3', 0), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('avg_pool_3x3', 0)],
reduce_concat=[2, 3, 4, 5])
DARTS_V2 = Genotype(
normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0),
('sep_conv_3x3', 1), ('sep_conv_3x3', 1), ('skip_connect', 0),
('skip_connect', 0), ('dil_conv_3x3', 2)],
normal_concat=[2, 3, 4, 5],
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2),
('max_pool_3x3', 1), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('max_pool_3x3', 1)],
reduce_concat=[2, 3, 4, 5])
MY_DARTS = Genotype(
normal=[('sep_conv_3x3', 0), ('skip_connect', 1), ('skip_connect', 0),
('dil_conv_5x5', 1), ('skip_connect', 0), ('sep_conv_3x3', 1),
('skip_connect', 0), ('sep_conv_3x3', 1)],
normal_concat=range(2, 6),
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('max_pool_3x3', 0),
('skip_connect', 2), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('skip_connect', 3)],
reduce_concat=range(2, 6))
DARTS = MY_DARTS
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers.ops as ops
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import math
from paddle.fluid.initializer import init_on_cpu
def cosine_decay(learning_rate, num_epoch, steps_one_epoch):
"""Applies cosine decay to the learning rate.
lr = 0.5 * (math.cos(epoch * (math.pi / 120)) + 1)
"""
global_step = _decay_step_counter()
with init_on_cpu():
decayed_lr = learning_rate * \
(ops.cos((global_step / steps_one_epoch) \
* math.pi / num_epoch) + 1)/2
return decayed_lr
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import time
import functools
import paddle
import paddle.fluid as fluid
from operations import *
class Cell():
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction,
reduction_prev):
print(C_prev_prev, C_prev, C)
if reduction_prev:
self.preprocess0 = functools.partial(FactorizedReduce, C_out=C)
else:
self.preprocess0 = functools.partial(
ReLUConvBN, C_out=C, kernel_size=1, stride=1, padding=0)
self.preprocess1 = functools.partial(
ReLUConvBN, C_out=C, kernel_size=1, stride=1, padding=0)
if reduction:
op_names, indices = zip(*genotype.reduce)
concat = genotype.reduce_concat
else:
op_names, indices = zip(*genotype.normal)
concat = genotype.normal_concat
print(op_names, indices, concat, reduction)
self._compile(C, op_names, indices, concat, reduction)
def _compile(self, C, op_names, indices, concat, reduction):
assert len(op_names) == len(indices)
self._steps = len(op_names) // 2
self._concat = concat
self.multiplier = len(concat)
self._ops = []
for name, index in zip(op_names, indices):
stride = 2 if reduction and index < 2 else 1
op = functools.partial(OPS[name], C=C, stride=stride, affine=True)
self._ops += [op]
self._indices = indices
def forward(self, s0, s1, drop_prob, is_train, name):
self.training = is_train
preprocess0_name = name + 'preprocess0.'
preprocess1_name = name + 'preprocess1.'
s0 = self.preprocess0(s0, name=preprocess0_name)
s1 = self.preprocess1(s1, name=preprocess1_name)
out = [s0, s1]
for i in range(self._steps):
h1 = out[self._indices[2 * i]]
h2 = out[self._indices[2 * i + 1]]
op1 = self._ops[2 * i]
op2 = self._ops[2 * i + 1]
h3 = op1(h1, name=name + '_ops.' + str(2 * i) + '.')
h4 = op2(h2, name=name + '_ops.' + str(2 * i + 1) + '.')
if self.training and drop_prob > 0.:
if h3 != h1:
h3 = fluid.layers.dropout(
h3,
drop_prob,
dropout_implementation='upscale_in_train')
if h4 != h2:
h4 = fluid.layers.dropout(
h4,
drop_prob,
dropout_implementation='upscale_in_train')
s = h3 + h4
out += [s]
return fluid.layers.concat([out[i] for i in self._concat], axis=1)
def AuxiliaryHeadCIFAR(input, num_classes, aux_name='auxiliary_head'):
relu_a = fluid.layers.relu(input)
pool_a = fluid.layers.pool2d(relu_a, 5, 'avg', 3)
conv2d_a = fluid.layers.conv2d(
pool_a,
128,
1,
name=aux_name + '.features.2',
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=aux_name + '.features.2.weight'),
bias_attr=False)
bn_a_name = aux_name + '.features.3'
bn_a = fluid.layers.batch_norm(
conv2d_a,
act='relu',
name=bn_a_name,
param_attr=ParamAttr(
initializer=Constant(1.), name=bn_a_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=bn_a_name + '.bias'),
moving_mean_name=bn_a_name + '.running_mean',
moving_variance_name=bn_a_name + '.running_var')
conv2d_b = fluid.layers.conv2d(
bn_a,
768,
2,
name=aux_name + '.features.5',
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=aux_name + '.features.5.weight'),
bias_attr=False)
bn_b_name = aux_name + '.features.6'
bn_b = fluid.layers.batch_norm(
conv2d_b,
act='relu',
name=bn_b_name,
param_attr=ParamAttr(
initializer=Constant(1.), name=bn_b_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=bn_b_name + '.bias'),
moving_mean_name=bn_b_name + '.running_mean',
moving_variance_name=bn_b_name + '.running_var')
fc_name = aux_name + '.classifier'
fc = fluid.layers.fc(bn_b,
num_classes,
name=fc_name,
param_attr=ParamAttr(
initializer=Normal(scale=1e-3),
name=fc_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=fc_name + '.bias'))
return fc
def StemConv(input, C_out, kernel_size, padding):
conv_a = fluid.layers.conv2d(
input,
C_out,
kernel_size,
padding=padding,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0), name='stem.0.weight'),
bias_attr=False)
bn_a = fluid.layers.batch_norm(
conv_a,
param_attr=ParamAttr(
initializer=Constant(1.), name='stem.1.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name='stem.1.bias'),
moving_mean_name='stem.1.running_mean',
moving_variance_name='stem.1.running_var')
return bn_a
class NetworkCIFAR(object):
def __init__(self, C, class_num, layers, auxiliary, genotype):
self.class_num = class_num
self._layers = layers
self._auxiliary = auxiliary
stem_multiplier = 3
self.drop_path_prob = 0
C_curr = stem_multiplier * C
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
self.cells = []
reduction_prev = False
for i in range(layers):
if i in [layers // 3, 2 * layers // 3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction,
reduction_prev)
reduction_prev = reduction
self.cells += [cell]
C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr
if i == 2 * layers // 3:
C_to_auxiliary = C_prev
def forward(self, init_channel, is_train):
self.training = is_train
self.logits_aux = None
num_channel = init_channel * 3
s0 = StemConv(self.image, num_channel, kernel_size=3, padding=1)
s1 = s0
for i, cell in enumerate(self.cells):
name = 'cells.' + str(i) + '.'
s0, s1 = s1, cell.forward(s0, s1, self.drop_path_prob, is_train,
name)
if i == int(2 * self._layers // 3):
if self._auxiliary and self.training:
self.logits_aux = AuxiliaryHeadCIFAR(s1, self.class_num)
out = fluid.layers.adaptive_pool2d(s1, (1, 1), "avg")
self.logits = fluid.layers.fc(out,
size=self.class_num,
param_attr=ParamAttr(
initializer=Normal(scale=1e-3),
name='classifier.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
name='classifier.bias'))
return self.logits, self.logits_aux
def build_input(self, image_shape, batch_size, is_train):
if is_train:
py_reader = fluid.layers.py_reader(
capacity=64,
shapes=[[-1] + image_shape, [-1, 1], [-1, 1], [-1, 1], [-1, 1],
[-1, 1], [-1, batch_size, self.class_num - 1]],
lod_levels=[0, 0, 0, 0, 0, 0, 0],
dtypes=[
"float32", "int64", "int64", "float32", "int32", "int32",
"float32"
],
use_double_buffer=True,
name='train_reader')
else:
py_reader = fluid.layers.py_reader(
capacity=64,
shapes=[[-1] + image_shape, [-1, 1]],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
use_double_buffer=True,
name='test_reader')
return py_reader
def train_model(self, py_reader, init_channels, aux, aux_w, batch_size,
loss_lambda):
self.image, self.ya, self.yb, self.lam, self.label_reshape,\
self.non_label_reshape, self.rad_var = fluid.layers.read_file(py_reader)
self.logits, self.logits_aux = self.forward(init_channels, True)
self.mixup_loss = self.mixup_loss(aux, aux_w)
self.lrc_loss = self.lrc_loss(batch_size)
return self.mixup_loss + loss_lambda * self.lrc_loss
def test_model(self, py_reader, init_channels):
self.image, self.ya = fluid.layers.read_file(py_reader)
self.logits, _ = self.forward(init_channels, False)
prob = fluid.layers.softmax(self.logits, use_cudnn=False)
loss = fluid.layers.cross_entropy(prob, self.ya)
acc_1 = fluid.layers.accuracy(self.logits, self.ya, k=1)
acc_5 = fluid.layers.accuracy(self.logits, self.ya, k=5)
return loss, acc_1, acc_5
def mixup_loss(self, auxiliary, auxiliary_weight):
prob = fluid.layers.softmax(self.logits, use_cudnn=False)
loss_a = fluid.layers.cross_entropy(prob, self.ya)
loss_b = fluid.layers.cross_entropy(prob, self.yb)
loss_a_mean = fluid.layers.reduce_mean(loss_a)
loss_b_mean = fluid.layers.reduce_mean(loss_b)
loss = self.lam * loss_a_mean + (1 - self.lam) * loss_b_mean
if auxiliary:
prob_aux = fluid.layers.softmax(self.logits_aux, use_cudnn=False)
loss_a_aux = fluid.layers.cross_entropy(prob_aux, self.ya)
loss_b_aux = fluid.layers.cross_entropy(prob_aux, self.yb)
loss_a_aux_mean = fluid.layers.reduce_mean(loss_a_aux)
loss_b_aux_mean = fluid.layers.reduce_mean(loss_b_aux)
loss_aux = self.lam * loss_a_aux_mean + (1 - self.lam
) * loss_b_aux_mean
return loss + auxiliary_weight * loss_aux
def lrc_loss(self, batch_size):
y_diff_reshape = fluid.layers.reshape(self.logits, shape=(-1, 1))
label_reshape = fluid.layers.squeeze(self.label_reshape, axes=[1])
non_label_reshape = fluid.layers.squeeze(
self.non_label_reshape, axes=[1])
label_reshape.stop_gradient = True
non_label_reshape.stop_graident = True
y_diff_label_reshape = fluid.layers.gather(y_diff_reshape,
label_reshape)
y_diff_non_label_reshape = fluid.layers.gather(y_diff_reshape,
non_label_reshape)
y_diff_label = fluid.layers.reshape(
y_diff_label_reshape, shape=(-1, batch_size, 1))
y_diff_non_label = fluid.layers.reshape(
y_diff_non_label_reshape,
shape=(-1, batch_size, self.class_num - 1))
y_diff_ = y_diff_non_label - y_diff_label
y_diff_ = fluid.layers.transpose(y_diff_, perm=[1, 2, 0])
rad_var_trans = fluid.layers.transpose(self.rad_var, perm=[1, 2, 0])
rad_y_diff_trans = rad_var_trans * y_diff_
lrc_loss_sum = fluid.layers.reduce_sum(rad_y_diff_trans, dim=[0, 1])
lrc_loss_ = fluid.layers.abs(lrc_loss_sum) / (batch_size *
(self.class_num - 1))
lrc_loss_mean = fluid.layers.reduce_mean(lrc_loss_)
return lrc_loss_mean
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.initializer import Normal
from paddle.fluid.initializer import Constant
OPS = {
'none' : lambda input, C, stride, name, affine: Zero(input, stride, name),
'avg_pool_3x3' : lambda input, C, stride, name, affine: fluid.layers.pool2d(input, 3, 'avg', pool_stride=stride, pool_padding=1, name=name),
'max_pool_3x3' : lambda input, C, stride, name, affine: fluid.layers.pool2d(input, 3, 'max', pool_stride=stride, pool_padding=1, name=name),
'skip_connect' : lambda input,C, stride, name, affine: Identity(input, name) if stride == 1 else FactorizedReduce(input, C, name=name, affine=affine),
'sep_conv_3x3' : lambda input,C, stride, name, affine: SepConv(input, C, C, 3, stride, 1, name=name, affine=affine),
'sep_conv_5x5' : lambda input,C, stride, name, affine: SepConv(input, C, C, 5, stride, 2, name=name, affine=affine),
'sep_conv_7x7' : lambda input,C, stride, name, affine: SepConv(input, C, C, 7, stride, 3, name=name, affine=affine),
'dil_conv_3x3' : lambda input,C, stride, name, affine: DilConv(input, C, C, 3, stride, 2, 2, name=name, affine=affine),
'dil_conv_5x5' : lambda input,C, stride, name, affine: DilConv(input, C, C, 5, stride, 4, 2, name=name, affine=affine),
'conv_7x1_1x7' : lambda input,C, stride, name, affine: SevenConv(input, C, name=name, affine=affine)
}
def ReLUConvBN(input, C_out, kernel_size, stride, padding, name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out,
kernel_size,
stride,
padding,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False)
if affine:
reluconvbn_out = fluid.layers.batch_norm(
conv2d_a,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.2.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.2.bias'),
moving_mean_name=name + 'op.2.running_mean',
moving_variance_name=name + 'op.2.running_var')
else:
reluconvbn_out = fluid.layers.batch_norm(
conv2d_a,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.2.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.2.bias'),
moving_mean_name=name + 'op.2.running_mean',
moving_variance_name=name + 'op.2.running_var')
return reluconvbn_out
def DilConv(input,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_in,
kernel_size,
stride,
padding,
dilation,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_out,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
dilconv_out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
dilconv_out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
return dilconv_out
def SepConv(input,
C_in,
C_out,
kernel_size,
stride,
padding,
name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_in,
kernel_size,
stride,
padding,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_in,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
bn_a = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
bn_a = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
relu_b = fluid.layers.relu(bn_a)
conv2d_d = fluid.layers.conv2d(
relu_b,
C_in,
kernel_size,
1,
padding,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.5.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_e = fluid.layers.conv2d(
conv2d_d,
C_out,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.6.weight'),
bias_attr=False)
if affine:
sepconv_out = fluid.layers.batch_norm(
conv2d_e,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.7.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.7.bias'),
moving_mean_name=name + 'op.7.running_mean',
moving_variance_name=name + 'op.7.running_var')
else:
sepconv_out = fluid.layers.batch_norm(
conv2d_e,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.7.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.7.bias'),
moving_mean_name=name + 'op.7.running_mean',
moving_variance_name=name + 'op.7.running_var')
return sepconv_out
def SevenConv(input, C_out, stride, name='', affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out, (1, 7), (1, stride), (0, 3),
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_out, (7, 1), (stride, 1), (3, 0),
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
def Identity(input, name=''):
return input
def Zero(input, stride, name=''):
ones = np.ones(input.shape[-2:])
ones[::stride, ::stride] = 0
ones = fluid.layers.assign(ones)
return input * ones
def FactorizedReduce(input, C_out, name='', affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out // 2,
1,
2,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'conv_1.weight'),
bias_attr=False)
h_end = relu_a.shape[2]
w_end = relu_a.shape[3]
slice_a = fluid.layers.slice(relu_a, [2, 3], [1, 1], [h_end, w_end])
conv2d_b = fluid.layers.conv2d(
slice_a,
C_out // 2,
1,
2,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'conv_2.weight'),
bias_attr=False)
out = fluid.layers.concat([conv2d_a, conv2d_b], axis=1)
if affine:
out = fluid.layers.batch_norm(
out,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'bn.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'bn.bias'),
moving_mean_name=name + 'bn.running_mean',
moving_variance_name=name + 'bn.running_var')
else:
out = fluid.layers.batch_norm(
out,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'bn.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'bn.bias'),
moving_mean_name=name + 'bn.running_mean',
moving_variance_name=name + 'bn.running_var')
return out
# Copyright (c) 2019 PaddlePaddle Authors. All Rig hts Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
"""
CIFAR-10 dataset.
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test images.
"""
from PIL import Image
from PIL import ImageOps
import numpy as np
import cPickle
import random
import utils
import paddle.fluid as fluid
import time
import os
import functools
import paddle.reader
__all__ = ['train10', 'test10']
image_size = 32
image_depth = 3
half_length = 8
CIFAR_MEAN = [0.4914, 0.4822, 0.4465]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
def generate_reshape_label(label, batch_size, CIFAR_CLASSES=10):
reshape_label = np.zeros((batch_size, 1), dtype='int32')
reshape_non_label = np.zeros(
(batch_size * (CIFAR_CLASSES - 1), 1), dtype='int32')
num = 0
for i in range(batch_size):
label_i = label[i]
reshape_label[i] = label_i + i * CIFAR_CLASSES
for j in range(CIFAR_CLASSES):
if label_i != j:
reshape_non_label[num] = \
j + i * CIFAR_CLASSES
num += 1
return reshape_label, reshape_non_label
def generate_bernoulli_number(batch_size, CIFAR_CLASSES=10):
rcc_iters = 50
rad_var = np.zeros((rcc_iters, batch_size, CIFAR_CLASSES - 1))
for i in range(rcc_iters):
bernoulli_num = np.random.binomial(size=batch_size, n=1, p=0.5)
bernoulli_map = np.array([])
ones = np.ones((CIFAR_CLASSES - 1, 1))
for batch_id in range(batch_size):
num = bernoulli_num[batch_id]
var_id = 2 * ones * num - 1
bernoulli_map = np.append(bernoulli_map, var_id)
rad_var[i] = bernoulli_map.reshape((batch_size, CIFAR_CLASSES - 1))
return rad_var.astype('float32')
def preprocess(sample, is_training, args):
image_array = sample.reshape(3, image_size, image_size)
rgb_array = np.transpose(image_array, (1, 2, 0))
img = Image.fromarray(rgb_array, 'RGB')
if is_training:
# pad and ramdom crop
img = ImageOps.expand(img, (4, 4, 4, 4), fill=0) # pad to 40 * 40 * 3
left_top = np.random.randint(9, size=2) # rand 0 - 8
img = img.crop((left_top[0], left_top[1], left_top[0] + image_size,
left_top[1] + image_size))
if np.random.randint(2):
img = img.transpose(Image.FLIP_LEFT_RIGHT)
img = np.array(img).astype(np.float32)
# per_image_standardization
img_float = img / 255.0
img = (img_float - CIFAR_MEAN) / CIFAR_STD
if is_training and args.cutout:
center = np.random.randint(image_size, size=2)
offset_width = max(0, center[0] - half_length)
offset_height = max(0, center[1] - half_length)
target_width = min(center[0] + half_length, image_size)
target_height = min(center[1] + half_length, image_size)
for i in range(offset_height, target_height):
for j in range(offset_width, target_width):
img[i][j][:] = 0.0
img = np.transpose(img, (2, 0, 1))
return img
def reader_creator_filepath(filename, sub_name, is_training, args):
files = os.listdir(filename)
names = [each_item for each_item in files if sub_name in each_item]
names.sort()
datasets = []
for name in names:
print("Reading file " + name)
batch = cPickle.load(open(filename + name, 'rb'))
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
dataset = zip(data, labels)
datasets.extend(dataset)
random.shuffle(datasets)
def read_batch(datasets, args):
for sample, label in datasets:
im = preprocess(sample, is_training, args)
yield im, [int(label)]
def reader():
batch_data = []
batch_label = []
for data, label in read_batch(datasets, args):
batch_data.append(data)
batch_label.append(label)
if len(batch_data) == args.batch_size:
batch_data = np.array(batch_data, dtype='float32')
batch_label = np.array(batch_label, dtype='int64')
if is_training:
flatten_label, flatten_non_label = \
generate_reshape_label(batch_label, args.batch_size)
rad_var = generate_bernoulli_number(args.batch_size)
mixed_x, y_a, y_b, lam = utils.mixup_data(
batch_data, batch_label, args.batch_size,
args.mix_alpha)
batch_out = [[mixed_x, y_a, y_b, lam, flatten_label, \
flatten_non_label, rad_var]]
yield batch_out
else:
batch_out = [[batch_data, batch_label]]
yield batch_out
batch_data = []
batch_label = []
return reader
def train10(args):
"""
CIFAR-10 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Training reader creator
:rtype: callable
"""
return reader_creator_filepath(args.data, 'data_batch', True, args)
def test10(args):
"""
CIFAR-10 test set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Test reader creator.
:rtype: callable
"""
return reader_creator_filepath(args.data, 'test_batch', False, args)
CUDA_VISIBLE_DEVICES=0 python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from learning_rate import cosine_decay
import numpy as np
import argparse
from model import NetworkCIFAR as Network
import reader
import sys
import os
import time
import logging
import genotypes
import paddle.fluid as fluid
import shutil
import utils
import cPickle as cp
parser = argparse.ArgumentParser("cifar")
parser.add_argument(
'--data',
type=str,
default='./dataset/cifar/cifar-10-batches-py/',
help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument(
'--learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument(
'--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument(
'--report_freq', type=float, default=50, help='report frequency')
parser.add_argument(
'--epochs', type=int, default=600, help='num of training epochs')
parser.add_argument(
'--init_channels', type=int, default=36, help='num of init channels')
parser.add_argument(
'--layers', type=int, default=20, help='total number of layers')
parser.add_argument(
'--model_path',
type=str,
default='saved_models',
help='path to save the model')
parser.add_argument(
'--auxiliary',
action='store_true',
default=False,
help='use auxiliary tower')
parser.add_argument(
'--auxiliary_weight',
type=float,
default=0.4,
help='weight for auxiliary loss')
parser.add_argument(
'--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument(
'--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument(
'--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument(
'--arch', type=str, default='DARTS', help='which architecture to use')
parser.add_argument(
'--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument(
'--lr_exp_decay',
action='store_true',
default=False,
help='use exponential_decay learning_rate')
parser.add_argument('--mix_alpha', type=float, default=0.5, help='mixup alpha')
parser.add_argument(
'--lrc_loss_lambda', default=0, type=float, help='lrc_loss_lambda')
parser.add_argument(
'--loss_type',
default=1,
type=float,
help='loss_type 0: cross entropy 1: multi margin loss 2: max margin loss')
args = parser.parse_args()
CIFAR_CLASSES = 10
dataset_train_size = 50000
image_size = 32
def main():
image_shape = [3, image_size, image_size]
devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(","))
logging.info("args = %s", args)
genotype = eval("genotypes.%s" % args.arch)
model = Network(args.init_channels, CIFAR_CLASSES, args.layers,
args.auxiliary, genotype)
steps_one_epoch = dataset_train_size / (devices_num * args.batch_size)
train(model, args, image_shape, steps_one_epoch)
def build_program(main_prog, startup_prog, args, is_train, model, im_shape,
steps_one_epoch):
out = []
with fluid.program_guard(main_prog, startup_prog):
py_reader = model.build_input(im_shape, args.batch_size, is_train)
if is_train:
with fluid.unique_name.guard():
loss = model.train_model(py_reader, args.init_channels,
args.auxiliary, args.auxiliary_weight,
args.batch_size, args.lrc_loss_lambda)
optimizer = fluid.optimizer.Momentum(
learning_rate=cosine_decay(args.learning_rate, \
args.epochs, steps_one_epoch),
regularization=fluid.regularizer.L2Decay(\
args.weight_decay),
momentum=args.momentum)
optimizer.minimize(loss)
out = [py_reader, loss]
else:
with fluid.unique_name.guard():
loss, acc_1, acc_5 = model.test_model(py_reader,
args.init_channels)
out = [py_reader, loss, acc_1, acc_5]
return out
def train(model, args, im_shape, steps_one_epoch):
train_startup_prog = fluid.Program()
test_startup_prog = fluid.Program()
train_prog = fluid.Program()
test_prog = fluid.Program()
train_py_reader, loss_train = build_program(train_prog, train_startup_prog,
args, True, model, im_shape,
steps_one_epoch)
test_py_reader, loss_test, acc_1, acc_5 = build_program(
test_prog, test_startup_prog, args, False, model, im_shape,
steps_one_epoch)
test_prog = test_prog.clone(for_test=True)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(train_startup_prog)
exe.run(test_startup_prog)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 1
train_exe = fluid.ParallelExecutor(
main_program=train_prog,
use_cuda=True,
loss_name=loss_train.name,
exec_strategy=exec_strategy)
train_reader = reader.train10(args)
test_reader = reader.test10(args)
train_py_reader.decorate_paddle_reader(train_reader)
test_py_reader.decorate_paddle_reader(test_reader)
fluid.clip.set_gradient_clip(fluid.clip.GradientClipByNorm(args.grad_clip))
fluid.memory_optimize(fluid.default_main_program())
def save_model(postfix, main_prog):
model_path = os.path.join(args.model_path, postfix)
if os.path.isdir(model_path):
shutil.rmtree(model_path)
fluid.io.save_persistables(exe, model_path, main_program=main_prog)
def test(epoch_id):
test_fetch_list = [loss_test, acc_1, acc_5]
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
test_py_reader.start()
test_start_time = time.time()
step_id = 0
try:
while True:
prev_test_start_time = test_start_time
test_start_time = time.time()
loss_test_v, acc_1_v, acc_5_v = exe.run(
test_prog, fetch_list=test_fetch_list)
objs.update(np.array(loss_test_v), args.batch_size)
top1.update(np.array(acc_1_v), args.batch_size)
top5.update(np.array(acc_5_v), args.batch_size)
if step_id % args.report_freq == 0:
print("Epoch {}, Step {}, acc_1 {}, acc_5 {}, time {}".
format(epoch_id, step_id,
np.array(acc_1_v),
np.array(acc_5_v), test_start_time -
prev_test_start_time))
step_id += 1
except fluid.core.EOFException:
test_py_reader.reset()
print("Epoch {0}, top1 {1}, top5 {2}".format(epoch_id, top1.avg,
top5.avg))
train_fetch_list = [loss_train]
epoch_start_time = time.time()
for epoch_id in range(args.epochs):
model.drop_path_prob = args.drop_path_prob * epoch_id / args.epochs
train_py_reader.start()
epoch_end_time = time.time()
if epoch_id > 0:
print("Epoch {}, total time {}".format(epoch_id - 1, epoch_end_time
- epoch_start_time))
epoch_start_time = epoch_end_time
epoch_end_time
start_time = time.time()
step_id = 0
try:
while True:
prev_start_time = start_time
start_time = time.time()
loss_v, = train_exe.run(
fetch_list=[v.name for v in train_fetch_list])
print("Epoch {}, Step {}, loss {}, time {}".format(epoch_id, step_id, \
np.array(loss_v).mean(), start_time-prev_start_time))
step_id += 1
sys.stdout.flush()
except fluid.core.EOFException:
train_py_reader.reset()
if epoch_id % 50 == 0 or epoch_id == args.epochs - 1:
save_model(str(epoch_id), train_prog)
test(epoch_id)
if __name__ == '__main__':
main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
import os
import sys
import time
import math
import numpy as np
def mixup_data(x, y, batch_size, alpha=1.0):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.
index = np.random.permutation(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x.astype('float32'), y_a.astype('int64'),\
y_b.astype('int64'), np.array(lam, dtype='float32')
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
#-*- coding: utf-8 -*- #-*- coding: utf-8 -*-
import math
import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
import numpy as np
import math
from tqdm import tqdm from tqdm import tqdm
from utils import fluid_flatten
class DQNModel(object): class DQNModel(object):
...@@ -39,34 +38,51 @@ class DQNModel(object): ...@@ -39,34 +38,51 @@ class DQNModel(object):
name='isOver', shape=[], dtype='bool') name='isOver', shape=[], dtype='bool')
def _build_net(self): def _build_net(self):
state, action, reward, next_s, isOver = self._get_inputs() self.predict_program = fluid.Program()
self.pred_value = self.get_DQN_prediction(state) self.train_program = fluid.Program()
self.predict_program = fluid.default_main_program().clone() self._sync_program = fluid.Program()
reward = fluid.layers.clip(reward, min=-1.0, max=1.0) with fluid.program_guard(self.predict_program):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
action_onehot = fluid.layers.one_hot(action, self.action_dim) with fluid.program_guard(self.train_program):
action_onehot = fluid.layers.cast(action_onehot, dtype='float32') state, action, reward, next_s, isOver = self._get_inputs()
pred_value = self.get_DQN_prediction(state)
pred_action_value = fluid.layers.reduce_sum( reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
fluid.layers.elementwise_mul(action_onehot, self.pred_value), dim=1)
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True) action_onehot = fluid.layers.one_hot(action, self.action_dim)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1) action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
best_v.stop_gradient = True
target = reward + (1.0 - fluid.layers.cast( pred_action_value = fluid.layers.reduce_sum(
isOver, dtype='float32')) * self.gamma * best_v fluid.layers.elementwise_mul(action_onehot, pred_value), dim=1)
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
self._sync_program = self._build_sync_target_network() targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
best_v.stop_gradient = True
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3) target = reward + (1.0 - fluid.layers.cast(
optimizer.minimize(cost) isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
# define program optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
self.train_program = fluid.default_main_program() optimizer.minimize(cost)
vars = list(self.train_program.list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
with fluid.program_guard(self._sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# fluid exe # fluid exe
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
...@@ -81,50 +97,50 @@ class DQNModel(object): ...@@ -81,50 +97,50 @@ class DQNModel(object):
conv1 = fluid.layers.conv2d( conv1 = fluid.layers.conv2d(
input=image, input=image,
num_filters=32, num_filters=32,
filter_size=[5, 5], filter_size=5,
stride=[1, 1], stride=1,
padding=[2, 2], padding=2,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv1'.format(variable_field)), param_attr=ParamAttr(name='{}_conv1'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field)))
max_pool1 = fluid.layers.pool2d( max_pool1 = fluid.layers.pool2d(
input=conv1, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv1, pool_size=2, pool_stride=2, pool_type='max')
conv2 = fluid.layers.conv2d( conv2 = fluid.layers.conv2d(
input=max_pool1, input=max_pool1,
num_filters=32, num_filters=32,
filter_size=[5, 5], filter_size=5,
stride=[1, 1], stride=1,
padding=[2, 2], padding=2,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv2'.format(variable_field)), param_attr=ParamAttr(name='{}_conv2'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field)))
max_pool2 = fluid.layers.pool2d( max_pool2 = fluid.layers.pool2d(
input=conv2, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv2, pool_size=2, pool_stride=2, pool_type='max')
conv3 = fluid.layers.conv2d( conv3 = fluid.layers.conv2d(
input=max_pool2, input=max_pool2,
num_filters=64, num_filters=64,
filter_size=[4, 4], filter_size=4,
stride=[1, 1], stride=1,
padding=[1, 1], padding=1,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv3'.format(variable_field)), param_attr=ParamAttr(name='{}_conv3'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field)))
max_pool3 = fluid.layers.pool2d( max_pool3 = fluid.layers.pool2d(
input=conv3, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv3, pool_size=2, pool_stride=2, pool_type='max')
conv4 = fluid.layers.conv2d( conv4 = fluid.layers.conv2d(
input=max_pool3, input=max_pool3,
num_filters=64, num_filters=64,
filter_size=[3, 3], filter_size=3,
stride=[1, 1], stride=1,
padding=[1, 1], padding=1,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv4'.format(variable_field)), param_attr=ParamAttr(name='{}_conv4'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field)))
flatten = fluid_flatten(conv4) flatten = fluid.layers.flatten(conv4, axis=1)
out = fluid.layers.fc( out = fluid.layers.fc(
input=flatten, input=flatten,
...@@ -133,23 +149,6 @@ class DQNModel(object): ...@@ -133,23 +149,6 @@ class DQNModel(object):
bias_attr=ParamAttr(name='{}_fc1_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_fc1_b'.format(variable_field)))
return out return out
def _build_sync_target_network(self):
vars = list(fluid.default_main_program().list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
sync_program = fluid.default_main_program().clone()
with fluid.program_guard(sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
sync_program = sync_program.prune(sync_ops)
return sync_program
def act(self, state, train_or_test): def act(self, state, train_or_test):
sample = np.random.random() sample = np.random.random()
......
#-*- coding: utf-8 -*- #-*- coding: utf-8 -*-
import math
import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
import numpy as np
from tqdm import tqdm from tqdm import tqdm
import math
from utils import fluid_argmax, fluid_flatten
class DoubleDQNModel(object): class DoubleDQNModel(object):
...@@ -39,41 +38,59 @@ class DoubleDQNModel(object): ...@@ -39,41 +38,59 @@ class DoubleDQNModel(object):
name='isOver', shape=[], dtype='bool') name='isOver', shape=[], dtype='bool')
def _build_net(self): def _build_net(self):
state, action, reward, next_s, isOver = self._get_inputs() self.predict_program = fluid.Program()
self.pred_value = self.get_DQN_prediction(state) self.train_program = fluid.Program()
self.predict_program = fluid.default_main_program().clone() self._sync_program = fluid.Program()
reward = fluid.layers.clip(reward, min=-1.0, max=1.0) with fluid.program_guard(self.predict_program):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
action_onehot = fluid.layers.one_hot(action, self.action_dim) with fluid.program_guard(self.train_program):
action_onehot = fluid.layers.cast(action_onehot, dtype='float32') state, action, reward, next_s, isOver = self._get_inputs()
pred_value = self.get_DQN_prediction(state)
pred_action_value = fluid.layers.reduce_sum( reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
fluid.layers.elementwise_mul(action_onehot, self.pred_value), dim=1)
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True) action_onehot = fluid.layers.one_hot(action, self.action_dim)
action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
next_s_predcit_value = self.get_DQN_prediction(next_s) pred_action_value = fluid.layers.reduce_sum(
greedy_action = fluid_argmax(next_s_predcit_value) fluid.layers.elementwise_mul(action_onehot, pred_value), dim=1)
predict_onehot = fluid.layers.one_hot(greedy_action, self.action_dim) targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
best_v = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(predict_onehot, targetQ_predict_value),
dim=1)
best_v.stop_gradient = True
target = reward + (1.0 - fluid.layers.cast( next_s_predcit_value = self.get_DQN_prediction(next_s)
isOver, dtype='float32')) * self.gamma * best_v greedy_action = fluid.layers.argmax(next_s_predcit_value, axis=1)
cost = fluid.layers.square_error_cost(pred_action_value, target) greedy_action = fluid.layers.unsqueeze(greedy_action, axes=[1])
cost = fluid.layers.reduce_mean(cost)
self._sync_program = self._build_sync_target_network() predict_onehot = fluid.layers.one_hot(greedy_action, self.action_dim)
best_v = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(predict_onehot, targetQ_predict_value),
dim=1)
best_v.stop_gradient = True
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3) target = reward + (1.0 - fluid.layers.cast(
optimizer.minimize(cost) isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
# define program optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
self.train_program = fluid.default_main_program() optimizer.minimize(cost)
vars = list(self.train_program.list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
with fluid.program_guard(self._sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# fluid exe # fluid exe
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
...@@ -88,50 +105,50 @@ class DoubleDQNModel(object): ...@@ -88,50 +105,50 @@ class DoubleDQNModel(object):
conv1 = fluid.layers.conv2d( conv1 = fluid.layers.conv2d(
input=image, input=image,
num_filters=32, num_filters=32,
filter_size=[5, 5], filter_size=5,
stride=[1, 1], stride=1,
padding=[2, 2], padding=2,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv1'.format(variable_field)), param_attr=ParamAttr(name='{}_conv1'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field)))
max_pool1 = fluid.layers.pool2d( max_pool1 = fluid.layers.pool2d(
input=conv1, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv1, pool_size=2, pool_stride=2, pool_type='max')
conv2 = fluid.layers.conv2d( conv2 = fluid.layers.conv2d(
input=max_pool1, input=max_pool1,
num_filters=32, num_filters=32,
filter_size=[5, 5], filter_size=5,
stride=[1, 1], stride=1,
padding=[2, 2], padding=2,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv2'.format(variable_field)), param_attr=ParamAttr(name='{}_conv2'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field)))
max_pool2 = fluid.layers.pool2d( max_pool2 = fluid.layers.pool2d(
input=conv2, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv2, pool_size=2, pool_stride=2, pool_type='max')
conv3 = fluid.layers.conv2d( conv3 = fluid.layers.conv2d(
input=max_pool2, input=max_pool2,
num_filters=64, num_filters=64,
filter_size=[4, 4], filter_size=4,
stride=[1, 1], stride=1,
padding=[1, 1], padding=1,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv3'.format(variable_field)), param_attr=ParamAttr(name='{}_conv3'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field)))
max_pool3 = fluid.layers.pool2d( max_pool3 = fluid.layers.pool2d(
input=conv3, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv3, pool_size=2, pool_stride=2, pool_type='max')
conv4 = fluid.layers.conv2d( conv4 = fluid.layers.conv2d(
input=max_pool3, input=max_pool3,
num_filters=64, num_filters=64,
filter_size=[3, 3], filter_size=3,
stride=[1, 1], stride=1,
padding=[1, 1], padding=1,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv4'.format(variable_field)), param_attr=ParamAttr(name='{}_conv4'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field)))
flatten = fluid_flatten(conv4) flatten = fluid.layers.flatten(conv4, axis=1)
out = fluid.layers.fc( out = fluid.layers.fc(
input=flatten, input=flatten,
...@@ -140,23 +157,6 @@ class DoubleDQNModel(object): ...@@ -140,23 +157,6 @@ class DoubleDQNModel(object):
bias_attr=ParamAttr(name='{}_fc1_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_fc1_b'.format(variable_field)))
return out return out
def _build_sync_target_network(self):
vars = list(fluid.default_main_program().list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
sync_program = fluid.default_main_program().clone()
with fluid.program_guard(sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
sync_program = sync_program.prune(sync_ops)
return sync_program
def act(self, state, train_or_test): def act(self, state, train_or_test):
sample = np.random.random() sample = np.random.random()
......
#-*- coding: utf-8 -*- #-*- coding: utf-8 -*-
import math
import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
import numpy as np
from tqdm import tqdm from tqdm import tqdm
import math
from utils import fluid_flatten
class DuelingDQNModel(object): class DuelingDQNModel(object):
...@@ -39,34 +38,51 @@ class DuelingDQNModel(object): ...@@ -39,34 +38,51 @@ class DuelingDQNModel(object):
name='isOver', shape=[], dtype='bool') name='isOver', shape=[], dtype='bool')
def _build_net(self): def _build_net(self):
state, action, reward, next_s, isOver = self._get_inputs() self.predict_program = fluid.Program()
self.pred_value = self.get_DQN_prediction(state) self.train_program = fluid.Program()
self.predict_program = fluid.default_main_program().clone() self._sync_program = fluid.Program()
reward = fluid.layers.clip(reward, min=-1.0, max=1.0) with fluid.program_guard(self.predict_program):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
action_onehot = fluid.layers.one_hot(action, self.action_dim) with fluid.program_guard(self.train_program):
action_onehot = fluid.layers.cast(action_onehot, dtype='float32') state, action, reward, next_s, isOver = self._get_inputs()
pred_value = self.get_DQN_prediction(state)
pred_action_value = fluid.layers.reduce_sum( reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
fluid.layers.elementwise_mul(action_onehot, self.pred_value), dim=1)
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True) action_onehot = fluid.layers.one_hot(action, self.action_dim)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1) action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
best_v.stop_gradient = True
target = reward + (1.0 - fluid.layers.cast( pred_action_value = fluid.layers.reduce_sum(
isOver, dtype='float32')) * self.gamma * best_v fluid.layers.elementwise_mul(action_onehot, pred_value), dim=1)
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
self._sync_program = self._build_sync_target_network() targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
best_v.stop_gradient = True
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3) target = reward + (1.0 - fluid.layers.cast(
optimizer.minimize(cost) isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
# define program optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
self.train_program = fluid.default_main_program() optimizer.minimize(cost)
vars = list(self.train_program.list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
with fluid.program_guard(self._sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# fluid exe # fluid exe
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
...@@ -81,50 +97,50 @@ class DuelingDQNModel(object): ...@@ -81,50 +97,50 @@ class DuelingDQNModel(object):
conv1 = fluid.layers.conv2d( conv1 = fluid.layers.conv2d(
input=image, input=image,
num_filters=32, num_filters=32,
filter_size=[5, 5], filter_size=5,
stride=[1, 1], stride=1,
padding=[2, 2], padding=2,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv1'.format(variable_field)), param_attr=ParamAttr(name='{}_conv1'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field)))
max_pool1 = fluid.layers.pool2d( max_pool1 = fluid.layers.pool2d(
input=conv1, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv1, pool_size=2, pool_stride=2, pool_type='max')
conv2 = fluid.layers.conv2d( conv2 = fluid.layers.conv2d(
input=max_pool1, input=max_pool1,
num_filters=32, num_filters=32,
filter_size=[5, 5], filter_size=5,
stride=[1, 1], stride=1,
padding=[2, 2], padding=2,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv2'.format(variable_field)), param_attr=ParamAttr(name='{}_conv2'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field)))
max_pool2 = fluid.layers.pool2d( max_pool2 = fluid.layers.pool2d(
input=conv2, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv2, pool_size=2, pool_stride=2, pool_type='max')
conv3 = fluid.layers.conv2d( conv3 = fluid.layers.conv2d(
input=max_pool2, input=max_pool2,
num_filters=64, num_filters=64,
filter_size=[4, 4], filter_size=4,
stride=[1, 1], stride=1,
padding=[1, 1], padding=1,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv3'.format(variable_field)), param_attr=ParamAttr(name='{}_conv3'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field)))
max_pool3 = fluid.layers.pool2d( max_pool3 = fluid.layers.pool2d(
input=conv3, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max') input=conv3, pool_size=2, pool_stride=2, pool_type='max')
conv4 = fluid.layers.conv2d( conv4 = fluid.layers.conv2d(
input=max_pool3, input=max_pool3,
num_filters=64, num_filters=64,
filter_size=[3, 3], filter_size=3,
stride=[1, 1], stride=1,
padding=[1, 1], padding=1,
act='relu', act='relu',
param_attr=ParamAttr(name='{}_conv4'.format(variable_field)), param_attr=ParamAttr(name='{}_conv4'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field))) bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field)))
flatten = fluid_flatten(conv4) flatten = fluid.layers.flatten(conv4, axis=1)
value = fluid.layers.fc( value = fluid.layers.fc(
input=flatten, input=flatten,
...@@ -143,24 +159,6 @@ class DuelingDQNModel(object): ...@@ -143,24 +159,6 @@ class DuelingDQNModel(object):
advantage, dim=1, keep_dim=True)) advantage, dim=1, keep_dim=True))
return Q return Q
def _build_sync_target_network(self):
vars = list(fluid.default_main_program().list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
sync_program = fluid.default_main_program().clone()
with fluid.program_guard(sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# The prune API is deprecated, please don't use it any more.
sync_program = sync_program._prune(sync_ops)
return sync_program
def act(self, state, train_or_test): def act(self, state, train_or_test):
sample = np.random.random() sample = np.random.random()
...@@ -186,12 +184,14 @@ class DuelingDQNModel(object): ...@@ -186,12 +184,14 @@ class DuelingDQNModel(object):
self.global_step += 1 self.global_step += 1
action = np.expand_dims(action, -1) action = np.expand_dims(action, -1)
self.exe.run(self.train_program, \ self.exe.run(self.train_program,
feed={'state': state.astype('float32'), \ feed={
'action': action.astype('int32'), \ 'state': state.astype('float32'),
'reward': reward, \ 'action': action.astype('int32'),
'next_s': next_state.astype('float32'), \ 'reward': reward,
'isOver': isOver}) 'next_s': next_state.astype('float32'),
'isOver': isOver
})
def sync_target_network(self): def sync_target_network(self):
self.exe.run(self._sync_program) self.exe.run(self._sync_program)
...@@ -29,7 +29,7 @@ The average game rewards that can be obtained for the three models as the number ...@@ -29,7 +29,7 @@ The average game rewards that can be obtained for the three models as the number
+ gym + gym
+ tqdm + tqdm
+ opencv-python + opencv-python
+ paddlepaddle-gpu>=0.12.0 + paddlepaddle-gpu>=1.0.0
+ ale_python_interface + ale_python_interface
### Install Dependencies: ### Install Dependencies:
......
...@@ -28,7 +28,7 @@ ...@@ -28,7 +28,7 @@
+ gym + gym
+ tqdm + tqdm
+ opencv-python + opencv-python
+ paddlepaddle-gpu>=0.12.0 + paddlepaddle-gpu>=1.0.0
+ ale_python_interface + ale_python_interface
### 下载依赖: ### 下载依赖:
......
#-*- coding: utf-8 -*-
#File: utils.py
import paddle.fluid as fluid
import numpy as np
def fluid_argmax(x):
"""
Get index of max value for the last dimension
"""
_, max_index = fluid.layers.topk(x, k=1)
return max_index
def fluid_flatten(x):
"""
Flatten fluid variable along the first dimension
"""
return fluid.layers.reshape(x, shape=[-1, np.prod(x.shape[1:])])
DeepLab运行本目录下的程序示例需要使用PaddlePaddle Fluid v1.0.0版本或以上。如果您的PaddlePaddle安装版本低于此要求,请按照安装文档中的说明更新PaddlePaddle安装版本,如果使用GPU,该程序需要使用cuDNN v7版本。 DeepLab运行本目录下的程序示例需要使用PaddlePaddle Fluid v1.3.0版本或以上。如果您的PaddlePaddle安装版本低于此要求,请按照安装文档中的说明更新PaddlePaddle安装版本,如果使用GPU,该程序需要使用cuDNN v7版本。
## 代码结构 ## 代码结构
...@@ -38,15 +38,16 @@ data/cityscape/ ...@@ -38,15 +38,16 @@ data/cityscape/
# 预训练模型准备 # 预训练模型准备
我们为了节约更多的显存,在这里我们使用Group Norm作为我们的归一化手段。
如果需要从头开始训练模型,用户需要下载我们的初始化模型 如果需要从头开始训练模型,用户需要下载我们的初始化模型
``` ```
wget http://paddlemodels.cdn.bcebos.com/deeplab/deeplabv3plus_xception65_initialize.tar.gz wget https://paddle-deeplab.bj.bcebos.com/deeplabv3plus_gn_init.tgz
tar -xf deeplabv3plus_xception65_initialize.tar.gz && rm deeplabv3plus_xception65_initialize.tar.gz tar -xf deeplabv3plus_gn_init.tgz && rm deeplabv3plus_gn_init.tgz
``` ```
如果需要最终训练模型进行fine tune或者直接用于预测,请下载我们的最终模型 如果需要最终训练模型进行fine tune或者直接用于预测,请下载我们的最终模型
``` ```
wget http://paddlemodels.cdn.bcebos.com/deeplab/deeplabv3plus.tar.gz wget https://paddle-deeplab.bj.bcebos.com/deeplabv3plus_gn.tgz
tar -xf deeplabv3plus.tar.gz && rm deeplabv3plus.tar.gz tar -xf deeplabv3plus_gn.tgz && rm deeplabv3plus_gn.tgz
``` ```
...@@ -59,6 +60,7 @@ python ./train.py \ ...@@ -59,6 +60,7 @@ python ./train.py \
--batch_size=1 \ --batch_size=1 \
--train_crop_size=769 \ --train_crop_size=769 \
--total_step=50 \ --total_step=50 \
--norm_type=gn \
--init_weights_path=$INIT_WEIGHTS_PATH \ --init_weights_path=$INIT_WEIGHTS_PATH \
--save_weights_path=$SAVE_WEIGHTS_PATH \ --save_weights_path=$SAVE_WEIGHTS_PATH \
--dataset_path=$DATASET_PATH --dataset_path=$DATASET_PATH
...@@ -72,19 +74,25 @@ python train.py --help ...@@ -72,19 +74,25 @@ python train.py --help
``` ```
python ./train.py \ python ./train.py \
--batch_size=8 \ --batch_size=8 \
--parallel=true \ --parallel=True \
--norm_type=gn \
--train_crop_size=769 \ --train_crop_size=769 \
--total_step=90000 \ --total_step=90000 \
--init_weights_path=deeplabv3plus_xception65_initialize.params \ --base_lr=0.001 \
--save_weights_path=output/ \ --init_weights_path=deeplabv3plus_gn_init \
--save_weights_path=output \
--dataset_path=$DATASET_PATH --dataset_path=$DATASET_PATH
``` ```
如果您的显存不足,可以尝试减小`batch_size`,同时等比例放大`total_step`, 保证相乘的值不变,这得益于Group Norm的特性,改变 `batch_size` 并不会显著影响结果,而且能够节约更多显存, 比如您可以设置`--batch_size=4 --total_step=180000`
如果您希望使用多卡进行训练,可以同比增加`batch_size`,减小`total_step`, 比如原来单卡训练是`--batch_size=4 --total_step=180000`,使用4卡训练则是`--batch_size=16 --total_step=45000`
### 测试 ### 测试
执行以下命令在`Cityscape`测试数据集上进行测试: 执行以下命令在`Cityscape`测试数据集上进行测试:
``` ```
python ./eval.py \ python ./eval.py \
--init_weights=deeplabv3plus.params \ --init_weights=deeplabv3plus_gn \
--norm_type=gn \
--dataset_path=$DATASET_PATH --dataset_path=$DATASET_PATH
``` ```
需要通过选项`--model_path`指定模型文件。测试脚本的输出的评估指标为mean IoU。 需要通过选项`--model_path`指定模型文件。测试脚本的输出的评估指标为mean IoU。
...@@ -93,15 +101,17 @@ python ./eval.py \ ...@@ -93,15 +101,17 @@ python ./eval.py \
## 实验结果 ## 实验结果
训练完成以后,使用`eval.py`在验证集上进行测试,得到以下结果: 训练完成以后,使用`eval.py`在验证集上进行测试,得到以下结果:
``` ```
load from: ../models/deeplabv3p load from: ../models/deeplabv3plus_gn
total number 500 total number 500
step: 500, mIoU: 0.7873 step: 500, mIoU: 0.7881
``` ```
## 其他信息 ## 其他信息
|数据集 | pretrained model | trained model | mean IoU
|---|---|---|---| |数据集 | norm type | pretrained model | trained model | mean IoU
|CityScape | [deeplabv3plus_xception65_initialize.tar.gz](http://paddlemodels.cdn.bcebos.com/deeplab/deeplabv3plus_xception65_initialize.tar.gz) | [deeplabv3plus.tar.gz](http://paddlemodels.cdn.bcebos.com/deeplab/deeplabv3plus.tar.gz) | 0.7873 | |---|---|---|---|---|
|CityScape | batch norm | [deeplabv3plus_xception65_initialize.tgz](https://paddle-deeplab.bj.bcebos.com/deeplabv3plus_xception65_initialize.tgz) | [deeplabv3plus.tgz](https://paddle-deeplab.bj.bcebos.com/deeplabv3plus.tgz) | 0.7873 |
|CityScape | group norm | [deeplabv3plus_gn_init.tgz](https://paddle-deeplab.bj.bcebos.com/deeplabv3plus_gn_init.tgz) | [deeplabv3plus_gn.tgz](https://paddle-deeplab.bj.bcebos.com/deeplabv3plus_gn.tgz) | 0.7881 |
## 参考 ## 参考
......
...@@ -2,7 +2,9 @@ from __future__ import absolute_import ...@@ -2,7 +2,9 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import os import os
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98' if 'FLAGS_fraction_of_gpu_memory_to_use' not in os.environ:
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98'
os.environ['FLAGS_enable_parallel_graph'] = '1'
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -12,21 +14,21 @@ from reader import CityscapeDataset ...@@ -12,21 +14,21 @@ from reader import CityscapeDataset
import reader import reader
import models import models
import sys import sys
import utility
parser = argparse.ArgumentParser()
add_arg = lambda *args: utility.add_arguments(*args, argparser=parser)
def add_argument(name, type, default, help): # yapf: disable
parser.add_argument('--' + name, default=default, type=type, help=help) add_arg('total_step', int, -1, "Number of the step to be evaluated, -1 for full evaluation.")
add_arg('init_weights_path', str, None, "Path of the weights to evaluate.")
add_arg('dataset_path', str, None, "Cityscape dataset path.")
def add_arguments(): add_arg('verbose', bool, False, "Print mIoU for each step if verbose.")
add_argument('total_step', int, -1, add_arg('use_gpu', bool, True, "Whether use GPU or CPU.")
"Number of the step to be evaluated, -1 for full evaluation.") add_arg('num_classes', int, 19, "Number of classes.")
add_argument('init_weights_path', str, None, add_arg('use_py_reader', bool, True, "Use py_reader.")
"Path of the weights to evaluate.") add_arg('norm_type', str, 'bn', "Normalization type, should be 'bn' or 'gn'.")
add_argument('dataset_path', str, None, "Cityscape dataset path.") #yapf: enable
add_argument('verbose', bool, False, "Print mIoU for each step if verbose.")
add_argument('use_gpu', bool, True, "Whether use GPU or CPU.")
add_argument('num_classes', int, 19, "Number of classes.")
def mean_iou(pred, label): def mean_iou(pred, label):
...@@ -43,7 +45,7 @@ def mean_iou(pred, label): ...@@ -43,7 +45,7 @@ def mean_iou(pred, label):
def load_model(): def load_model():
if args.init_weights_path.endswith('/'): if os.path.isdir(args.init_weights_path):
fluid.io.load_params( fluid.io.load_params(
exe, dirname=args.init_weights_path, main_program=tp) exe, dirname=args.init_weights_path, main_program=tp)
else: else:
...@@ -53,13 +55,11 @@ def load_model(): ...@@ -53,13 +55,11 @@ def load_model():
CityscapeDataset = reader.CityscapeDataset CityscapeDataset = reader.CityscapeDataset
parser = argparse.ArgumentParser()
add_arguments()
args = parser.parse_args() args = parser.parse_args()
models.clean() models.clean()
models.is_train = False models.is_train = False
models.default_norm_type = args.norm_type
deeplabv3p = models.deeplabv3p deeplabv3p = models.deeplabv3p
image_shape = [1025, 2049] image_shape = [1025, 2049]
...@@ -73,8 +73,15 @@ reader.default_config['shuffle'] = False ...@@ -73,8 +73,15 @@ reader.default_config['shuffle'] = False
num_classes = args.num_classes num_classes = args.num_classes
with fluid.program_guard(tp, sp): with fluid.program_guard(tp, sp):
img = fluid.layers.data(name='img', shape=[3, 0, 0], dtype='float32') if args.use_py_reader:
label = fluid.layers.data(name='label', shape=eval_shape, dtype='int32') py_reader = fluid.layers.py_reader(capacity=64,
shapes=[[1, 3, 0, 0], [1] + eval_shape],
dtypes=['float32', 'int32'])
img, label = fluid.layers.read_file(py_reader)
else:
img = fluid.layers.data(name='img', shape=[3, 0, 0], dtype='float32')
label = fluid.layers.data(name='label', shape=eval_shape, dtype='int32')
img = fluid.layers.resize_bilinear(img, image_shape) img = fluid.layers.resize_bilinear(img, image_shape)
logit = deeplabv3p(img) logit = deeplabv3p(img)
logit = fluid.layers.resize_bilinear(logit, eval_shape) logit = fluid.layers.resize_bilinear(logit, eval_shape)
...@@ -105,16 +112,25 @@ else: ...@@ -105,16 +112,25 @@ else:
total_step = args.total_step total_step = args.total_step
batches = dataset.get_batch_generator(batch_size, total_step) batches = dataset.get_batch_generator(batch_size, total_step)
if args.use_py_reader:
py_reader.decorate_tensor_provider(lambda :[ (yield b[1],b[2]) for b in batches])
py_reader.start()
sum_iou = 0 sum_iou = 0
all_correct = np.array([0], dtype=np.int64) all_correct = np.array([0], dtype=np.int64)
all_wrong = np.array([0], dtype=np.int64) all_wrong = np.array([0], dtype=np.int64)
for i, imgs, labels, names in batches: for i in range(total_step):
result = exe.run(tp, if not args.use_py_reader:
feed={'img': imgs, _, imgs, labels, names = next(batches)
'label': labels}, result = exe.run(tp,
fetch_list=[pred, miou, out_wrong, out_correct]) feed={'img': imgs,
'label': labels},
fetch_list=[pred, miou, out_wrong, out_correct])
else:
result = exe.run(tp,
fetch_list=[pred, miou, out_wrong, out_correct])
wrong = result[2][:-1] + all_wrong wrong = result[2][:-1] + all_wrong
right = result[3][:-1] + all_correct right = result[3][:-1] + all_correct
all_wrong = wrong.copy() all_wrong = wrong.copy()
...@@ -122,7 +138,6 @@ for i, imgs, labels, names in batches: ...@@ -122,7 +138,6 @@ for i, imgs, labels, names in batches:
mp = (wrong + right) != 0 mp = (wrong + right) != 0
miou2 = np.mean((right[mp] * 1.0 / (right[mp] + wrong[mp]))) miou2 = np.mean((right[mp] * 1.0 / (right[mp] + wrong[mp])))
if args.verbose: if args.verbose:
print('step: %s, mIoU: %s' % (i + 1, miou2)) print('step: %s, mIoU: %s' % (i + 1, miou2), flush=True)
else: else:
print('\rstep: %s, mIoU: %s' % (i + 1, miou2)) print('\rstep: %s, mIoU: %s' % (i + 1, miou2), end='\r', flush=True)
sys.stdout.flush()
...@@ -5,6 +5,7 @@ import paddle ...@@ -5,6 +5,7 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import contextlib import contextlib
import os
name_scope = "" name_scope = ""
decode_channel = 48 decode_channel = 48
...@@ -146,10 +147,12 @@ def bn_relu(data): ...@@ -146,10 +147,12 @@ def bn_relu(data):
def relu(data): def relu(data):
return append_op_result(fluid.layers.relu(data), 'relu') return append_op_result(
fluid.layers.relu(
data, name=name_scope + 'relu'), 'relu')
def seq_conv(input, channel, stride, filter, dilation=1, act=None): def seperate_conv(input, channel, stride, filter, dilation=1, act=None):
with scope('depthwise'): with scope('depthwise'):
input = conv( input = conv(
input, input,
...@@ -187,14 +190,14 @@ def xception_block(input, ...@@ -187,14 +190,14 @@ def xception_block(input,
with scope('separable_conv' + str(i + 1)): with scope('separable_conv' + str(i + 1)):
if not activation_fn_in_separable_conv: if not activation_fn_in_separable_conv:
data = relu(data) data = relu(data)
data = seq_conv( data = seperate_conv(
data, data,
channels[i], channels[i],
strides[i], strides[i],
filters[i], filters[i],
dilation=dilation) dilation=dilation)
else: else:
data = seq_conv( data = seperate_conv(
data, data,
channels[i], channels[i],
strides[i], strides[i],
...@@ -273,11 +276,11 @@ def encoder(input): ...@@ -273,11 +276,11 @@ def encoder(input):
with scope("aspp0"): with scope("aspp0"):
aspp0 = bn_relu(conv(input, channel, 1, 1, groups=1, padding=0)) aspp0 = bn_relu(conv(input, channel, 1, 1, groups=1, padding=0))
with scope("aspp1"): with scope("aspp1"):
aspp1 = seq_conv(input, channel, 1, 3, dilation=6, act=relu) aspp1 = seperate_conv(input, channel, 1, 3, dilation=6, act=relu)
with scope("aspp2"): with scope("aspp2"):
aspp2 = seq_conv(input, channel, 1, 3, dilation=12, act=relu) aspp2 = seperate_conv(input, channel, 1, 3, dilation=12, act=relu)
with scope("aspp3"): with scope("aspp3"):
aspp3 = seq_conv(input, channel, 1, 3, dilation=18, act=relu) aspp3 = seperate_conv(input, channel, 1, 3, dilation=18, act=relu)
with scope("concat"): with scope("concat"):
data = append_op_result( data = append_op_result(
fluid.layers.concat( fluid.layers.concat(
...@@ -300,10 +303,10 @@ def decoder(encode_data, decode_shortcut): ...@@ -300,10 +303,10 @@ def decoder(encode_data, decode_shortcut):
[encode_data, decode_shortcut], axis=1) [encode_data, decode_shortcut], axis=1)
append_op_result(encode_data, 'concat') append_op_result(encode_data, 'concat')
with scope("separable_conv1"): with scope("separable_conv1"):
encode_data = seq_conv( encode_data = seperate_conv(
encode_data, encode_channel, 1, 3, dilation=1, act=relu) encode_data, encode_channel, 1, 3, dilation=1, act=relu)
with scope("separable_conv2"): with scope("separable_conv2"):
encode_data = seq_conv( encode_data = seperate_conv(
encode_data, encode_channel, 1, 3, dilation=1, act=relu) encode_data, encode_channel, 1, 3, dilation=1, act=relu)
return encode_data return encode_data
......
...@@ -2,7 +2,8 @@ from __future__ import absolute_import ...@@ -2,7 +2,8 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import os import os
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98' if 'FLAGS_fraction_of_gpu_memory_to_use' not in os.environ:
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98'
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -12,105 +13,94 @@ from reader import CityscapeDataset ...@@ -12,105 +13,94 @@ from reader import CityscapeDataset
import reader import reader
import models import models
import time import time
import contextlib
import paddle.fluid.profiler as profiler
import utility
parser = argparse.ArgumentParser()
def add_argument(name, type, default, help): add_arg = lambda *args: utility.add_arguments(*args, argparser=parser)
parser.add_argument('--' + name, default=default, type=type, help=help)
# yapf: disable
add_arg('batch_size', int, 2, "The number of images in each batch during training.")
def add_arguments(): add_arg('train_crop_size', int, 769, "Image crop size during training.")
add_argument('batch_size', int, 2, add_arg('base_lr', float, 0.0001, "The base learning rate for model training.")
"The number of images in each batch during training.") add_arg('total_step', int, 90000, "Number of the training step.")
add_argument('train_crop_size', int, 769, add_arg('init_weights_path', str, None, "Path of the initial weights in paddlepaddle format.")
"'Image crop size during training.") add_arg('save_weights_path', str, None, "Path of the saved weights during training.")
add_argument('base_lr', float, 0.0001, add_arg('dataset_path', str, None, "Cityscape dataset path.")
"The base learning rate for model training.") add_arg('parallel', bool, True, "using ParallelExecutor.")
add_argument('total_step', int, 90000, "Number of the training step.") add_arg('use_gpu', bool, True, "Whether use GPU or CPU.")
add_argument('init_weights_path', str, None, add_arg('num_classes', int, 19, "Number of classes.")
"Path of the initial weights in paddlepaddle format.") add_arg('load_logit_layer', bool, True, "Load last logit fc layer or not. If you are training with different number of classes, you should set to False.")
add_argument('save_weights_path', str, None, add_arg('memory_optimize', bool, True, "Using memory optimizer.")
"Path of the saved weights during training.") add_arg('norm_type', str, 'bn', "Normalization type, should be 'bn' or 'gn'.")
add_argument('dataset_path', str, None, "Cityscape dataset path.") add_arg('profile', bool, False, "Enable profiler.")
add_argument('parallel', bool, False, "using ParallelExecutor.") add_arg('use_py_reader', bool, True, "Use py reader.")
add_argument('use_gpu', bool, True, "Whether use GPU or CPU.") parser.add_argument(
add_argument('num_classes', int, 19, "Number of classes.") '--enable_ce',
parser.add_argument( action='store_true',
'--enable_ce', help='If set, run the task with continuous evaluation logs.')
action='store_true', #yapf: enable
help='If set, run the task with continuous evaluation logs.')
@contextlib.contextmanager
def profile_context(profile=True):
if profile:
with profiler.profiler('All', 'total', '/tmp/profile_file2'):
yield
else:
yield
def load_model(): def load_model():
myvars = [ if os.path.isdir(args.init_weights_path):
x for x in tp.list_vars() load_vars = [
if isinstance(x, fluid.framework.Parameter) and x.name.find('logit') == x for x in tp.list_vars()
-1 if isinstance(x, fluid.framework.Parameter) and x.name.find('logit') ==
] -1
if args.init_weights_path.endswith('/'): ]
if args.num_classes == 19: if args.load_logit_layer:
fluid.io.load_params( fluid.io.load_params(
exe, dirname=args.init_weights_path, main_program=tp) exe, dirname=args.init_weights_path, main_program=tp)
else: else:
fluid.io.load_vars(exe, dirname=args.init_weights_path, vars=myvars) fluid.io.load_vars(exe, dirname=args.init_weights_path, vars=load_vars)
else: else:
if args.num_classes == 19: fluid.io.load_params(
fluid.io.load_params( exe,
exe, dirname="",
dirname="", filename=args.init_weights_path,
filename=args.init_weights_path, main_program=tp)
main_program=tp)
else:
fluid.io.load_vars(
exe, dirname="", filename=args.init_weights_path, vars=myvars)
def save_model(): def save_model():
if args.save_weights_path.endswith('/'): assert not os.path.isfile(args.save_weights_path)
fluid.io.save_params( fluid.io.save_params(
exe, dirname=args.save_weights_path, main_program=tp) exe, dirname=args.save_weights_path, main_program=tp)
else:
fluid.io.save_params(
exe, dirname="", filename=args.save_weights_path, main_program=tp)
def loss(logit, label): def loss(logit, label):
label_nignore = (label < num_classes).astype('float32') label_nignore = fluid.layers.less_than(
label = fluid.layers.elementwise_min( label.astype('float32'),
label, fluid.layers.assign(np.array([num_classes], 'float32')),
fluid.layers.assign(np.array( force_cpu=False).astype('float32')
[num_classes - 1], dtype=np.int32)))
logit = fluid.layers.transpose(logit, [0, 2, 3, 1]) logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
logit = fluid.layers.reshape(logit, [-1, num_classes]) logit = fluid.layers.reshape(logit, [-1, num_classes])
label = fluid.layers.reshape(label, [-1, 1]) label = fluid.layers.reshape(label, [-1, 1])
label = fluid.layers.cast(label, 'int64') label = fluid.layers.cast(label, 'int64')
label_nignore = fluid.layers.reshape(label_nignore, [-1, 1]) label_nignore = fluid.layers.reshape(label_nignore, [-1, 1])
loss = fluid.layers.softmax_with_cross_entropy(logit, label) loss = fluid.layers.softmax_with_cross_entropy(logit, label, ignore_index=255, numeric_stable_mode=True)
loss = loss * label_nignore label_nignore.stop_gradient = True
no_grad_set.add(label_nignore.name) label.stop_gradient = True
no_grad_set.add(label.name)
return loss, label_nignore return loss, label_nignore
def get_cards(args):
if args.enable_ce:
cards = os.environ.get('CUDA_VISIBLE_DEVICES')
num = len(cards.split(","))
return num
else:
return args.num_devices
CityscapeDataset = reader.CityscapeDataset
parser = argparse.ArgumentParser()
add_arguments()
args = parser.parse_args() args = parser.parse_args()
utility.print_arguments(args)
models.clean() models.clean()
models.bn_momentum = 0.9997 models.bn_momentum = 0.9997
models.dropout_keep_prop = 0.9 models.dropout_keep_prop = 0.9
models.label_number = args.num_classes models.label_number = args.num_classes
models.default_norm_type = args.norm_type
deeplabv3p = models.deeplabv3p deeplabv3p = models.deeplabv3p
sp = fluid.Program() sp = fluid.Program()
...@@ -133,12 +123,17 @@ weight_decay = 0.00004 ...@@ -133,12 +123,17 @@ weight_decay = 0.00004
base_lr = args.base_lr base_lr = args.base_lr
total_step = args.total_step total_step = args.total_step
no_grad_set = set()
with fluid.program_guard(tp, sp): with fluid.program_guard(tp, sp):
img = fluid.layers.data( if args.use_py_reader:
name='img', shape=[3] + image_shape, dtype='float32') batch_size_each = batch_size // fluid.core.get_cuda_device_count()
label = fluid.layers.data(name='label', shape=image_shape, dtype='int32') py_reader = fluid.layers.py_reader(capacity=64,
shapes=[[batch_size_each, 3] + image_shape, [batch_size_each] + image_shape],
dtypes=['float32', 'int32'])
img, label = fluid.layers.read_file(py_reader)
else:
img = fluid.layers.data(
name='img', shape=[3] + image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=image_shape, dtype='int32')
logit = deeplabv3p(img) logit = deeplabv3p(img)
pred = fluid.layers.argmax(logit, axis=1).astype('int32') pred = fluid.layers.argmax(logit, axis=1).astype('int32')
loss, mask = loss(logit, label) loss, mask = loss(logit, label)
...@@ -154,11 +149,21 @@ with fluid.program_guard(tp, sp): ...@@ -154,11 +149,21 @@ with fluid.program_guard(tp, sp):
lr, lr,
momentum=0.9, momentum=0.9,
regularization=fluid.regularizer.L2DecayRegularizer( regularization=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=weight_decay), ) regularization_coeff=weight_decay))
retv = opt.minimize(loss_mean, startup_program=sp, no_grad_set=no_grad_set) optimize_ops, params_grads = opt.minimize(loss_mean, startup_program=sp)
# ir memory optimizer has some issues, we need to seed grad persistable to
fluid.memory_optimize( # avoid this issue
tp, print_log=False, skip_opt_set=set([pred.name, loss_mean.name]), level=1) for p,g in params_grads: g.persistable = True
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = fluid.core.get_cuda_device_count()
exec_strategy.num_iteration_per_drop_scope = 100
build_strategy = fluid.BuildStrategy()
if args.memory_optimize:
build_strategy.fuse_relu_depthwise_conv = True
build_strategy.enable_inplace = True
build_strategy.memory_optimize = True
place = fluid.CPUPlace() place = fluid.CPUPlace()
if args.use_gpu: if args.use_gpu:
...@@ -170,47 +175,58 @@ if args.init_weights_path: ...@@ -170,47 +175,58 @@ if args.init_weights_path:
print("load from:", args.init_weights_path) print("load from:", args.init_weights_path)
load_model() load_model()
dataset = CityscapeDataset(args.dataset_path, 'train') dataset = reader.CityscapeDataset(args.dataset_path, 'train')
if args.parallel: if args.parallel:
exe_p = fluid.ParallelExecutor( binary = fluid.compiler.CompiledProgram(tp).with_data_parallel(
use_cuda=True, loss_name=loss_mean.name, main_program=tp) loss_name=loss_mean.name,
build_strategy=build_strategy,
batches = dataset.get_batch_generator(batch_size, total_step) exec_strategy=exec_strategy)
else:
binary = fluid.compiler.CompiledProgram(main)
if args.use_py_reader:
assert(batch_size % fluid.core.get_cuda_device_count() == 0)
def data_gen():
batches = dataset.get_batch_generator(
batch_size // fluid.core.get_cuda_device_count(),
total_step * fluid.core.get_cuda_device_count())
for b in batches:
yield b[1], b[2]
py_reader.decorate_tensor_provider(data_gen)
py_reader.start()
else:
batches = dataset.get_batch_generator(batch_size, total_step)
total_time = 0.0 total_time = 0.0
epoch_idx = 0 epoch_idx = 0
train_loss = 0 train_loss = 0
for i, imgs, labels, names in batches: with profile_context(args.profile):
epoch_idx += 1 for i in range(total_step):
begin_time = time.time() epoch_idx += 1
prev_start_time = time.time() begin_time = time.time()
if args.parallel: prev_start_time = time.time()
retv = exe_p.run(fetch_list=[pred.name, loss_mean.name], if not args.use_py_reader:
feed={'img': imgs, _, imgs, labels, names = next(batches)
'label': labels}) train_loss, = exe.run(binary,
else: feed={'img': imgs,
retv = exe.run(tp, 'label': labels}, fetch_list=[loss_mean])
feed={'img': imgs, else:
'label': labels}, train_loss, = exe.run(binary, fetch_list=[loss_mean])
fetch_list=[pred, loss_mean]) train_loss = np.mean(train_loss)
end_time = time.time() end_time = time.time()
total_time += end_time - begin_time total_time += end_time - begin_time
if i % 100 == 0: if i % 100 == 0:
print("Model is saved to", args.save_weights_path) print("Model is saved to", args.save_weights_path)
save_model() save_model()
print("step {:d}, loss: {:.6f}, step_time_cost: {:.3f}".format( print("step {:d}, loss: {:.6f}, step_time_cost: {:.3f}".format(
i, np.mean(retv[1]), end_time - prev_start_time)) i, train_loss, end_time - prev_start_time))
# only for ce print("Training done. Model is saved to", args.save_weights_path)
train_loss = np.mean(retv[1]) save_model()
if args.enable_ce: if args.enable_ce:
gpu_num = get_cards(args) gpu_num = fluid.core.get_cuda_device_count()
print("kpis\teach_pass_duration_card%s\t%s" % print("kpis\teach_pass_duration_card%s\t%s" %
(gpu_num, total_time / epoch_idx)) (gpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, train_loss)) print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, train_loss))
print("Training done. Model is saved to", args.save_weights_path)
save_model()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import distutils.util
import six
def print_arguments(args):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(six.iteritems(vars(args))):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
...@@ -121,7 +121,7 @@ def detect_face(image, shrink): ...@@ -121,7 +121,7 @@ def detect_face(image, shrink):
return_numpy=False) return_numpy=False)
detection = np.array(detection) detection = np.array(detection)
# layout: xmin, ymin, xmax. ymax, score # layout: xmin, ymin, xmax. ymax, score
if detection.shape == (1, ): if np.prod(detection.shape) == 1:
print("No face detected") print("No face detected")
return np.array([[0, 0, 0, 0, 0]]) return np.array([[0, 0, 0, 0, 0]])
det_conf = detection[:, 1] det_conf = detection[:, 1]
......
...@@ -103,7 +103,7 @@ python infer.py \ ...@@ -103,7 +103,7 @@ python infer.py \
## 其他信息 ## 其他信息
|数据集 | pretrained model | |数据集 | pretrained model |
|---|---| |---|---|
|CityScape | [Model]()[md: ] | |CityScape | [pretrained_model](https://paddle-icnet-models.bj.bcebos.com/model_1000.tar.gz) |
## 参考 ## 参考
......
...@@ -155,6 +155,17 @@ class DataGenerater: ...@@ -155,6 +155,17 @@ class DataGenerater:
else: else:
return np.pad(image, ((0, pad_h), (0, pad_w)), 'constant') return np.pad(image, ((0, pad_h), (0, pad_w)), 'constant')
def random_crop(self, im, out_shape, is_color=True):
h, w = im.shape[:2]
h_start = np.random.randint(0, h - out_shape[0] + 1)
w_start = np.random.randint(0, w - out_shape[1] + 1)
h_end, w_end = h_start + out_shape[0], w_start + out_shape[1]
if is_color:
im = im[h_start:h_end, w_start:w_end, :]
else:
im = im[h_start:h_end, w_start:w_end]
return im
def resize(self, image, label, out_size): def resize(self, image, label, out_size):
""" """
Resize image and label by padding or cropping. Resize image and label by padding or cropping.
...@@ -166,8 +177,7 @@ class DataGenerater: ...@@ -166,8 +177,7 @@ class DataGenerater:
combined = np.concatenate((image, label), axis=2) combined = np.concatenate((image, label), axis=2)
combined = self.padding_as( combined = self.padding_as(
combined, out_size[0], out_size[1], is_color=True) combined, out_size[0], out_size[1], is_color=True)
combined = dataset.image.random_crop( combined = self.random_crop(combined, out_size, is_color=True)
combined, out_size[0], is_color=True)
image = combined[:, :, 0:3] image = combined[:, :, 0:3]
label = combined[:, :, 3:4] + ignore_label label = combined[:, :, 3:4] + ignore_label
return image, label return image, label
......
...@@ -235,12 +235,12 @@ def proj_block(input, filter_num, padding=0, dilation=None, stride=1, ...@@ -235,12 +235,12 @@ def proj_block(input, filter_num, padding=0, dilation=None, stride=1,
def sub_net_4(input, input_shape): def sub_net_4(input, input_shape):
tmp = interp(input, out_shape=np.ceil(input_shape // 32)) tmp = interp(input, out_shape=(input_shape // 32))
tmp = dilation_convs(tmp) tmp = dilation_convs(tmp)
tmp = pyramis_pooling(tmp, input_shape) tmp = pyramis_pooling(tmp, input_shape)
tmp = conv(tmp, 1, 1, 256, 1, 1, name="conv5_4_k1") tmp = conv(tmp, 1, 1, 256, 1, 1, name="conv5_4_k1")
tmp = bn(tmp, relu=True) tmp = bn(tmp, relu=True)
tmp = interp(tmp, input_shape // 16) tmp = interp(tmp, out_shape=np.ceil(input_shape / 16))
return tmp return tmp
......
...@@ -81,7 +81,7 @@ python train.py \ ...@@ -81,7 +81,7 @@ python train.py \
* **lr**: initialized learning rate. Default: 0.1. * **lr**: initialized learning rate. Default: 0.1.
* **pretrained_model**: model path for pretraining. Default: None. * **pretrained_model**: model path for pretraining. Default: None.
* **checkpoint**: the checkpoint path to resume. Default: None. * **checkpoint**: the checkpoint path to resume. Default: None.
* **model_category**: the category of models, ("models"|"models_name"). Default: "models". * **model_category**: the category of models, ("models"|"models_name"). Default: "models_name".
Or can start the training step by running the ```run.sh```. Or can start the training step by running the ```run.sh```.
...@@ -209,6 +209,7 @@ Models are trained by starting with learning rate ```0.1``` and decaying it by ` ...@@ -209,6 +209,7 @@ Models are trained by starting with learning rate ```0.1``` and decaying it by `
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip) | 72.08%/90.63% | 71.65%/90.57% | |[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip) | 72.08%/90.63% | 71.65%/90.57% |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip) | 72.56%/90.83% | 72.32%/90.98% | |[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip) | 72.56%/90.83% | 72.32%/90.98% |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip) | 70.91%/89.54% | 70.51%/89.35% | |[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip) | 70.91%/89.54% | 70.51%/89.35% |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.zip) | 71.90%/90.55% | 71.53%/90.41% |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip) | 76.35%/92.80% | 76.22%/92.92% | |[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip) | 76.35%/92.80% | 76.22%/92.92% |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip) | 77.49%/93.57% | 77.56%/93.64% | |[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip) | 77.49%/93.57% | 77.56%/93.64% |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip) | 78.12%/93.93% | 77.92%/93.87% | |[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip) | 78.12%/93.93% | 77.92%/93.87% |
...@@ -220,6 +221,8 @@ Models are trained by starting with learning rate ```0.1``` and decaying it by ` ...@@ -220,6 +221,8 @@ Models are trained by starting with learning rate ```0.1``` and decaying it by `
- Released models: not specify parameter names - Released models: not specify parameter names
**NOTE: These are trained by using model_category=models**
|model | top-1/top-5 accuracy(PIL)| top-1/top-5 accuracy(CV2) | |model | top-1/top-5 accuracy(PIL)| top-1/top-5 accuracy(CV2) |
|- |:-: |:-:| |- |:-: |:-:|
|[ResNet152](http://paddle-imagenet-models.bj.bcebos.com/ResNet152_pretrained.zip) | 78.18%/93.93% | 78.11%/94.04% | |[ResNet152](http://paddle-imagenet-models.bj.bcebos.com/ResNet152_pretrained.zip) | 78.18%/93.93% | 78.11%/94.04% |
......
...@@ -79,7 +79,7 @@ python train.py \ ...@@ -79,7 +79,7 @@ python train.py \
* **lr**: initialized learning rate. Default: 0.1. * **lr**: initialized learning rate. Default: 0.1.
* **pretrained_model**: model path for pretraining. Default: None. * **pretrained_model**: model path for pretraining. Default: None.
* **checkpoint**: the checkpoint path to resume. Default: None. * **checkpoint**: the checkpoint path to resume. Default: None.
* **model_category**: the category of models, ("models"|"models_name"). Default:"models". * **model_category**: the category of models, ("models"|"models_name"). Default:"models_name".
**数据读取器说明:** 数据读取器定义在```reader.py``````reader_cv2.py```中, 一般, CV2 reader可以提高数据读取速度, reader(PIL)可以得到相对更高的精度, 在[训练阶段](#training-a-model), 默认采用的增广方式是随机裁剪与水平翻转, 而在[评估](#inference)[推断](#inference)阶段用的默认方式是中心裁剪。当前支持的数据增广方式有: **数据读取器说明:** 数据读取器定义在```reader.py``````reader_cv2.py```中, 一般, CV2 reader可以提高数据读取速度, reader(PIL)可以得到相对更高的精度, 在[训练阶段](#training-a-model), 默认采用的增广方式是随机裁剪与水平翻转, 而在[评估](#inference)[推断](#inference)阶段用的默认方式是中心裁剪。当前支持的数据增广方式有:
* 旋转 * 旋转
...@@ -204,6 +204,7 @@ Models包括两种模型:带有参数名字的模型,和不带有参数名 ...@@ -204,6 +204,7 @@ Models包括两种模型:带有参数名字的模型,和不带有参数名
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip) | 72.08%/90.63% | 71.65%/90.57% | |[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip) | 72.08%/90.63% | 71.65%/90.57% |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip) | 72.56%/90.83% | 72.32%/90.98% | |[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip) | 72.56%/90.83% | 72.32%/90.98% |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip) | 70.91%/89.54% | 70.51%/89.35% | |[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip) | 70.91%/89.54% | 70.51%/89.35% |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.zip) | 71.90%/90.55% | 71.53%/90.41% |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip) | 76.35%/92.80% | 76.22%/92.92% | |[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip) | 76.35%/92.80% | 76.22%/92.92% |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip) | 77.49%/93.57% | 77.56%/93.64% | |[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip) | 77.49%/93.57% | 77.56%/93.64% |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip) | 78.12%/93.93% | 77.92%/93.87% | |[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip) | 78.12%/93.93% | 77.92%/93.87% |
...@@ -212,6 +213,8 @@ Models包括两种模型:带有参数名字的模型,和不带有参数名 ...@@ -212,6 +213,8 @@ Models包括两种模型:带有参数名字的模型,和不带有参数名
- Released models: not specify parameter names - Released models: not specify parameter names
**注意:这是model_category = models 的预训练模型**
|model | top-1/top-5 accuracy(PIL)| top-1/top-5 accuracy(CV2) | |model | top-1/top-5 accuracy(PIL)| top-1/top-5 accuracy(CV2) |
|- |:-: |:-:| |- |:-: |:-:|
|[ResNet152](http://paddle-imagenet-models.bj.bcebos.com/ResNet152_pretrained.zip) | 78.18%/93.93% | 78.11%/94.04% | |[ResNet152](http://paddle-imagenet-models.bj.bcebos.com/ResNet152_pretrained.zip) | 78.18%/93.93% | 78.11%/94.04% |
......
...@@ -39,6 +39,8 @@ You can test if distributed training works on a single node before deploying to ...@@ -39,6 +39,8 @@ You can test if distributed training works on a single node before deploying to
***NOTE: for best performance, we recommend using multi-process mode, see No.3. And together with fp16.*** ***NOTE: for best performance, we recommend using multi-process mode, see No.3. And together with fp16.***
***NOTE: for nccl2 distributed mode, you must ensure each node train same number of samples, or set skip_unbalanced_data to 1 to do sync training.***
1. simply run `python dist_train.py` to start local training with default configuratioins. 1. simply run `python dist_train.py` to start local training with default configuratioins.
2. for pserver mode, run `bash run_ps_mode.sh` to start 2 pservers and 2 trainers, these 2 trainers 2. for pserver mode, run `bash run_ps_mode.sh` to start 2 pservers and 2 trainers, these 2 trainers
will use GPU 0 and 1 to simulate 2 workers. will use GPU 0 and 1 to simulate 2 workers.
...@@ -90,4 +92,19 @@ The default resnet50 distributed training config is based on this paper: https:/ ...@@ -90,4 +92,19 @@ The default resnet50 distributed training config is based on this paper: https:/
### Performance ### Performance
TBD The below figure shows fluid distributed training performances. We did these on a 4-node V100 GPU cluster,
each has 8 V100 GPU card, with total of 32 GPUs. All modes can reach the "state of the art (choose loss scale carefully when using fp16 mode)" of ResNet50 model with imagenet dataset. The Y axis in the figure shows
the images/s while the X-axis shows the number of GPUs.
<p align="center">
<img src="../images/imagenet_dist_performance.png" width=528> <br />
Performance of Multiple-GPU Training of Resnet50 on Imagenet
</p>
The second figure shows speed-ups when using multiple GPUs according to the above figure.
<p align="center">
<img src="../images/imagenet_dist_speedup.png" width=528> <br />
Speed-ups of Multiple-GPU Training of Resnet50 on Imagenet
</p>
...@@ -7,8 +7,6 @@ import time ...@@ -7,8 +7,6 @@ import time
import sys import sys
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
#import models
import models_name as models
#import reader_cv2 as reader #import reader_cv2 as reader
import reader as reader import reader as reader
import argparse import argparse
...@@ -26,10 +24,21 @@ add_arg('class_dim', int, 1000, "Class number.") ...@@ -26,10 +24,21 @@ add_arg('class_dim', int, 1000, "Class number.")
add_arg('image_shape', str, "3,224,224", "Input image size") add_arg('image_shape', str, "3,224,224", "Input image size")
add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.") add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.")
add_arg('model_category', str, "models_name", "Whether to use models_name or not, valid value:'models','models_name'." )
# yapf: enable # yapf: enable
model_list = [m for m in dir(models) if "__" not in m]
def set_models(model_category):
global models
assert model_category in ["models", "models_name"
], "{} is not in lists: {}".format(
model_category, ["models", "models_name"])
if model_category == "models_name":
import models_name as models
else:
import models as models
def eval(args): def eval(args):
...@@ -40,6 +49,7 @@ def eval(args): ...@@ -40,6 +49,7 @@ def eval(args):
with_memory_optimization = args.with_mem_opt with_memory_optimization = args.with_mem_opt
image_shape = [int(m) for m in args.image_shape.split(",")] image_shape = [int(m) for m in args.image_shape.split(",")]
model_list = [m for m in dir(models) if "__" not in m]
assert model_name in model_list, "{} is not in lists: {}".format(args.model, assert model_name in model_list, "{} is not in lists: {}".format(args.model,
model_list) model_list)
...@@ -63,11 +73,11 @@ def eval(args): ...@@ -63,11 +73,11 @@ def eval(args):
acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5) acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
else: else:
out = model.net(input=image, class_dim=class_dim) out = model.net(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label) cost, pred = fluid.layers.softmax_with_cross_entropy(
out, label, return_softmax=True)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
test_program = fluid.default_main_program().clone(for_test=True) test_program = fluid.default_main_program().clone(for_test=True)
...@@ -125,6 +135,7 @@ def eval(args): ...@@ -125,6 +135,7 @@ def eval(args):
def main(): def main():
args = parser.parse_args() args = parser.parse_args()
print_arguments(args) print_arguments(args)
set_models(args.model_category)
eval(args) eval(args)
......
...@@ -7,7 +7,6 @@ import time ...@@ -7,7 +7,6 @@ import time
import sys import sys
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import models
import reader import reader
import argparse import argparse
import functools import functools
...@@ -23,9 +22,19 @@ add_arg('image_shape', str, "3,224,224", "Input image size") ...@@ -23,9 +22,19 @@ add_arg('image_shape', str, "3,224,224", "Input image size")
add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.") add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.")
add_arg('model_category', str, "models_name", "Whether to use models_name or not, valid value:'models','models_name'." )
# yapf: enable # yapf: enable
model_list = [m for m in dir(models) if "__" not in m]
def set_models(model_category):
global models
assert model_category in ["models", "models_name"
], "{} is not in lists: {}".format(
model_category, ["models", "models_name"])
if model_category == "models_name":
import models_name as models
else:
import models as models
def infer(args): def infer(args):
...@@ -35,7 +44,7 @@ def infer(args): ...@@ -35,7 +44,7 @@ def infer(args):
pretrained_model = args.pretrained_model pretrained_model = args.pretrained_model
with_memory_optimization = args.with_mem_opt with_memory_optimization = args.with_mem_opt
image_shape = [int(m) for m in args.image_shape.split(",")] image_shape = [int(m) for m in args.image_shape.split(",")]
model_list = [m for m in dir(models) if "__" not in m]
assert model_name in model_list, "{} is not in lists: {}".format(args.model, assert model_name in model_list, "{} is not in lists: {}".format(args.model,
model_list) model_list)
...@@ -85,6 +94,7 @@ def infer(args): ...@@ -85,6 +94,7 @@ def infer(args):
def main(): def main():
args = parser.parse_args() args = parser.parse_args()
print_arguments(args) print_arguments(args)
set_models(args.model_category)
infer(args) infer(args)
......
#Hyperparameters config #Hyperparameters config
#Example: SE_ResNext50_32x4d
python train.py \ python train.py \
--model=SE_ResNeXt50_32x4d \ --model=SE_ResNeXt50_32x4d \
--batch_size=32 \ --batch_size=400 \
--total_images=1281167 \ --total_images=1281167 \
--class_dim=1000 \ --class_dim=1000 \
--image_shape=3,224,224 \ --image_shape=3,224,224 \
--model_save_dir=output/ \ --model_save_dir=output/ \
--with_mem_opt=False \ --with_mem_opt=True \
--lr_strategy=piecewise_decay \ --lr_strategy=cosine_decay \
--lr=0.1 --lr=0.1 \
--num_epochs=200 \
--l2_decay=1.2e-4 \
--model_category=models_name \
# >log_SE_ResNeXt50_32x4d.txt 2>&1 & # >log_SE_ResNeXt50_32x4d.txt 2>&1 &
#AlexNet: #AlexNet:
#python train.py \ #python train.py \
# --model=AlexNet \ # --model=AlexNet \
...@@ -19,24 +22,12 @@ python train.py \ ...@@ -19,24 +22,12 @@ python train.py \
# --class_dim=1000 \ # --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --model_save_dir=output/ \ # --model_save_dir=output/ \
# --with_mem_opt=False \ # --with_mem_opt=True \
# --model_category=models_name \
# --lr_strategy=piecewise_decay \ # --lr_strategy=piecewise_decay \
# --num_epochs=120 \ # --num_epochs=120 \
# --lr=0.01 # --lr=0.01 \
# --l2_decay=1e-4
#VGG11:
#python train.py \
# --model=VGG11 \
# --batch_size=512 \
# --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=False \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.1
#MobileNet v1: #MobileNet v1:
#python train.py \ #python train.py \
...@@ -46,12 +37,26 @@ python train.py \ ...@@ -46,12 +37,26 @@ python train.py \
# --class_dim=1000 \ # --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --model_save_dir=output/ \ # --model_save_dir=output/ \
# --with_mem_opt=False \ # --with_mem_opt=True \
# --model_category=models_name \
# --lr_strategy=piecewise_decay \ # --lr_strategy=piecewise_decay \
# --num_epochs=120 \ # --num_epochs=120 \
# --lr=0.1 # --lr=0.1 \
# --l2_decay=3e-5
#python train.py \
# --model=MobileNetV2 \
# --batch_size=500 \
# --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --model_category=models_name \
# --with_mem_opt=True \
# --lr_strategy=cosine_decay \
# --num_epochs=240 \
# --lr=0.1 \
# --l2_decay=4e-5
#ResNet50: #ResNet50:
#python train.py \ #python train.py \
# --model=ResNet50 \ # --model=ResNet50 \
...@@ -60,10 +65,12 @@ python train.py \ ...@@ -60,10 +65,12 @@ python train.py \
# --class_dim=1000 \ # --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --model_save_dir=output/ \ # --model_save_dir=output/ \
# --with_mem_opt=False \ # --with_mem_opt=True \
# --model_category=models_name \
# --lr_strategy=piecewise_decay \ # --lr_strategy=piecewise_decay \
# --num_epochs=120 \ # --num_epochs=120 \
# --lr=0.1 # --lr=0.1 \
# --l2_decay=1e-4
#ResNet101: #ResNet101:
#python train.py \ #python train.py \
...@@ -73,44 +80,58 @@ python train.py \ ...@@ -73,44 +80,58 @@ python train.py \
# --class_dim=1000 \ # --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --model_save_dir=output/ \ # --model_save_dir=output/ \
# --with_mem_opt=False \ # --model_category=models_name \
# --with_mem_opt=True \
# --lr_strategy=piecewise_decay \ # --lr_strategy=piecewise_decay \
# --num_epochs=120 \ # --num_epochs=120 \
# --lr=0.1 # --lr=0.1 \
# --l2_decay=1e-4
#ResNet152: #ResNet152:
#python train.py \ #python train.py \
# --model=ResNet152 \ # --model=ResNet152 \
# --batch_size=256 \ # --batch_size=256 \
# --total_images=1281167 \ # --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --lr_strategy=piecewise_decay \ # --lr_strategy=piecewise_decay \
# --model_category=models_name \
# --with_mem_opt=True \
# --lr=0.1 \ # --lr=0.1 \
# --num_epochs=120 \ # --num_epochs=120 \
# --l2_decay=1e-4 \(TODO) # --l2_decay=1e-4
#SE_ResNeXt50: #SE_ResNeXt50_32x4d:
#python train.py \ #python train.py \
# --model=SE_ResNeXt50 \ # --model=SE_ResNeXt50_32x4d \
# --batch_size=400 \ # --batch_size=400 \
# --total_images=1281167 \ # --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --lr_strategy=cosine_decay \ # --lr_strategy=cosine_decay \
# --model_category=models_name \
# --model_save_dir=output/ \
# --lr=0.1 \ # --lr=0.1 \
# --num_epochs=200 \ # --num_epochs=200 \
# --l2_decay=12e-5 \(TODO) # --with_mem_opt=True \
# --l2_decay=1.2e-4
#SE_ResNeXt101: #SE_ResNeXt101_32x4d:
#python train.py \ #python train.py \
# --model=SE_ResNeXt101 \ # --model=SE_ResNeXt101_32x4d \
# --batch_size=400 \ # --batch_size=400 \
# --total_images=1281167 \ # --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --lr_strategy=cosine_decay \ # --lr_strategy=cosine_decay \
# --model_category=models_name \
# --model_save_dir=output/ \
# --lr=0.1 \ # --lr=0.1 \
# --num_epochs=200 \ # --num_epochs=200 \
# --l2_decay=15e-5 \(TODO) # --with_mem_opt=True \
# --l2_decay=1.5e-5
#VGG11: #VGG11:
#python train.py \ #python train.py \
...@@ -119,17 +140,55 @@ python train.py \ ...@@ -119,17 +140,55 @@ python train.py \
# --total_images=1281167 \ # --total_images=1281167 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --lr_strategy=cosine_decay \ # --lr_strategy=cosine_decay \
# --class_dim=1000 \
# --model_category=models_name \
# --model_save_dir=output/ \
# --lr=0.1 \ # --lr=0.1 \
# --num_epochs=90 \ # --num_epochs=90 \
# --l2_decay=2e-4 \(TODO) # --with_mem_opt=True \
# --l2_decay=2e-4
#VGG13: #VGG13:
#python train.py #python train.py
# --model=VGG13 \ # --model=VGG13 \
# --batch_size=256 \ # --batch_size=256 \
# --total_images=1281167 \ # --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \ # --image_shape=3,224,224 \
# --lr_strategy=cosine_decay \ # --lr_strategy=cosine_decay \
# --lr=0.01 \ # --lr=0.01 \
# --num_epochs=90 \ # --num_epochs=90 \
# --l2_decay=3e-4 \(TODO) # --model_category=models_name \
# --model_save_dir=output/ \
# --with_mem_opt=True \
# --l2_decay=3e-4
#VGG16:
#python train.py
# --model=VGG16 \
# --batch_size=256 \
# --total_images=1281167 \
# --class_dim=1000 \
# --lr_strategy=cosine_decay \
# --image_shape=3,224,224 \
# --model_category=models_name \
# --model_save_dir=output/ \
# --lr=0.01 \
# --num_epochs=90 \
# --with_mem_opt=True \
# --l2_decay=3e-4
#VGG19:
#python train.py
# --model=VGG19 \
# --batch_size=256 \
# --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --lr_strategy=cosine_decay \
# --lr=0.01 \
# --num_epochs=90 \
# --with_mem_opt=True \
# --model_category=models_name \
# --model_save_dir=output/ \
# --l2_decay=3e-4
...@@ -10,7 +10,6 @@ import math ...@@ -10,7 +10,6 @@ import math
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.dataset.flowers as flowers import paddle.dataset.flowers as flowers
import models
import reader import reader
import argparse import argparse
import functools import functools
...@@ -19,8 +18,8 @@ import utils ...@@ -19,8 +18,8 @@ import utils
from utils.learning_rate import cosine_decay from utils.learning_rate import cosine_decay
from utils.fp16_utils import create_master_params_grads, master_param_to_train_param from utils.fp16_utils import create_master_params_grads, master_param_to_train_param
from utility import add_arguments, print_arguments from utility import add_arguments, print_arguments
import models
import models_name IMAGENET1000 = 1281167
parser = argparse.ArgumentParser(description=__doc__) parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser) add_arg = functools.partial(add_arguments, argparser=parser)
...@@ -40,25 +39,32 @@ add_arg('lr_strategy', str, "piecewise_decay", "Set the learning rate ...@@ -40,25 +39,32 @@ add_arg('lr_strategy', str, "piecewise_decay", "Set the learning rate
add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.")
add_arg('enable_ce', bool, False, "If set True, enable continuous evaluation job.") add_arg('enable_ce', bool, False, "If set True, enable continuous evaluation job.")
add_arg('data_dir', str, "./data/ILSVRC2012", "The ImageNet dataset root dir.") add_arg('data_dir', str, "./data/ILSVRC2012", "The ImageNet dataset root dir.")
add_arg('model_category', str, "models", "Whether to use models_name or not, valid value:'models','models_name'" ) add_arg('model_category', str, "models_name", "Whether to use models_name or not, valid value:'models','models_name'." )
add_arg('fp16', bool, False, "Enable half precision training with fp16." ) add_arg('fp16', bool, False, "Enable half precision training with fp16." )
add_arg('scale_loss', float, 1.0, "Scale loss for fp16." ) add_arg('scale_loss', float, 1.0, "Scale loss for fp16." )
add_arg('l2_decay', float, 1e-4, "L2_decay parameter.")
add_arg('momentum_rate', float, 0.9, "momentum_rate.")
# yapf: enable # yapf: enable
def set_models(model): def set_models(model_category):
global models global models
if model == "models": assert model_category in ["models", "models_name"
models = models ], "{} is not in lists: {}".format(
model_category, ["models", "models_name"])
if model_category == "models_name":
import models_name as models
else: else:
models = models_name import models as models
def optimizer_setting(params): def optimizer_setting(params):
ls = params["learning_strategy"] ls = params["learning_strategy"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
if ls["name"] == "piecewise_decay": if ls["name"] == "piecewise_decay":
if "total_images" not in params: if "total_images" not in params:
total_images = 1281167 total_images = IMAGENET1000
else: else:
total_images = params["total_images"] total_images = params["total_images"]
batch_size = ls["batch_size"] batch_size = ls["batch_size"]
...@@ -71,16 +77,17 @@ def optimizer_setting(params): ...@@ -71,16 +77,17 @@ def optimizer_setting(params):
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay( learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr), boundaries=bd, values=lr),
momentum=0.9, momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(1e-4)) regularization=fluid.regularizer.L2Decay(l2_decay))
elif ls["name"] == "cosine_decay": elif ls["name"] == "cosine_decay":
if "total_images" not in params: if "total_images" not in params:
total_images = 1281167 total_images = IMAGENET1000
else: else:
total_images = params["total_images"] total_images = params["total_images"]
batch_size = ls["batch_size"] batch_size = ls["batch_size"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
step = int(total_images / batch_size + 1) step = int(total_images / batch_size + 1)
lr = params["lr"] lr = params["lr"]
...@@ -89,43 +96,42 @@ def optimizer_setting(params): ...@@ -89,43 +96,42 @@ def optimizer_setting(params):
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
learning_rate=cosine_decay( learning_rate=cosine_decay(
learning_rate=lr, step_each_epoch=step, epochs=num_epochs), learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
momentum=0.9, momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(4e-5)) regularization=fluid.regularizer.L2Decay(l2_decay))
elif ls["name"] == "exponential_decay": elif ls["name"] == "linear_decay":
if "total_images" not in params: if "total_images" not in params:
total_images = 1281167 total_images = IMAGENET1000
else: else:
total_images = params["total_images"] total_images = params["total_images"]
batch_size = ls["batch_size"] batch_size = ls["batch_size"]
step = int(total_images / batch_size +1)
lr = params["lr"]
num_epochs = params["num_epochs"] num_epochs = params["num_epochs"]
learning_decay_rate_factor=ls["learning_decay_rate_factor"] start_lr = params["lr"]
num_epochs_per_decay = ls["num_epochs_per_decay"] l2_decay = params["l2_decay"]
NUM_GPUS = 1 momentum_rate = params["momentum_rate"]
end_lr = 0
total_step = int((total_images / batch_size) * num_epochs)
lr = fluid.layers.polynomial_decay(
start_lr, total_step, end_lr, power=1)
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.exponential_decay( learning_rate=lr,
learning_rate = lr * NUM_GPUS, momentum=momentum_rate,
decay_steps = step * num_epochs_per_decay / NUM_GPUS, regularization=fluid.regularizer.L2Decay(l2_decay))
decay_rate = learning_decay_rate_factor),
momentum=0.9,
regularization = fluid.regularizer.L2Decay(4e-5))
else: else:
lr = params["lr"] lr = params["lr"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
learning_rate=lr, learning_rate=lr,
momentum=0.9, momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(1e-4)) regularization=fluid.regularizer.L2Decay(l2_decay))
return optimizer return optimizer
def net_config(image, label, model, args): def net_config(image, label, model, args):
model_list = [m for m in dir(models) if "__" not in m] model_list = [m for m in dir(models) if "__" not in m]
assert args.model in model_list,"{} is not lists: {}".format( assert args.model in model_list, "{} is not lists: {}".format(args.model,
args.model, model_list) model_list)
class_dim = args.class_dim class_dim = args.class_dim
model_name = args.model model_name = args.model
...@@ -148,8 +154,9 @@ def net_config(image, label, model, args): ...@@ -148,8 +154,9 @@ def net_config(image, label, model, args):
acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1) acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5) acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
else: else:
out = model.net(input=image, class_dim=class_dim) out = model.net(input=image, class_dim=class_dim)
cost, pred = fluid.layers.softmax_with_cross_entropy(out, label, return_softmax=True) cost, pred = fluid.layers.softmax_with_cross_entropy(
out, label, return_softmax=True)
if args.scale_loss > 1: if args.scale_loss > 1:
avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss) avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
else: else:
...@@ -190,19 +197,25 @@ def build_program(is_train, main_prog, startup_prog, args): ...@@ -190,19 +197,25 @@ def build_program(is_train, main_prog, startup_prog, args):
params["num_epochs"] = args.num_epochs params["num_epochs"] = args.num_epochs
params["learning_strategy"]["batch_size"] = args.batch_size params["learning_strategy"]["batch_size"] = args.batch_size
params["learning_strategy"]["name"] = args.lr_strategy params["learning_strategy"]["name"] = args.lr_strategy
params["l2_decay"] = args.l2_decay
params["momentum_rate"] = args.momentum_rate
optimizer = optimizer_setting(params) optimizer = optimizer_setting(params)
if args.fp16: if args.fp16:
params_grads = optimizer.backward(avg_cost) params_grads = optimizer.backward(avg_cost)
master_params_grads = create_master_params_grads( master_params_grads = create_master_params_grads(
params_grads, main_prog, startup_prog, args.scale_loss) params_grads, main_prog, startup_prog, args.scale_loss)
optimizer.apply_gradients(master_params_grads) optimizer.apply_gradients(master_params_grads)
master_param_to_train_param(master_params_grads, params_grads, main_prog) master_param_to_train_param(master_params_grads,
params_grads, main_prog)
else: else:
optimizer.minimize(avg_cost) optimizer.minimize(avg_cost)
global_lr = optimizer._global_learning_rate()
return py_reader, avg_cost, acc_top1, acc_top5 if is_train:
return py_reader, avg_cost, acc_top1, acc_top5, global_lr
else:
return py_reader, avg_cost, acc_top1, acc_top5
def train(args): def train(args):
...@@ -220,7 +233,7 @@ def train(args): ...@@ -220,7 +233,7 @@ def train(args):
startup_prog.random_seed = 1000 startup_prog.random_seed = 1000
train_prog.random_seed = 1000 train_prog.random_seed = 1000
train_py_reader, train_cost, train_acc1, train_acc5 = build_program( train_py_reader, train_cost, train_acc1, train_acc5, global_lr = build_program(
is_train=True, is_train=True,
main_prog=train_prog, main_prog=train_prog,
startup_prog=startup_prog, startup_prog=startup_prog,
...@@ -255,7 +268,8 @@ def train(args): ...@@ -255,7 +268,8 @@ def train(args):
if visible_device: if visible_device:
device_num = len(visible_device.split(',')) device_num = len(visible_device.split(','))
else: else:
device_num = subprocess.check_output(['nvidia-smi', '-L']).decode().count('\n') device_num = subprocess.check_output(
['nvidia-smi', '-L']).decode().count('\n')
train_batch_size = args.batch_size / device_num train_batch_size = args.batch_size / device_num
test_batch_size = 16 test_batch_size = 16
...@@ -283,11 +297,12 @@ def train(args): ...@@ -283,11 +297,12 @@ def train(args):
use_cuda=bool(args.use_gpu), use_cuda=bool(args.use_gpu),
loss_name=train_cost.name) loss_name=train_cost.name)
train_fetch_list = [train_cost.name, train_acc1.name, train_acc5.name] train_fetch_list = [
train_cost.name, train_acc1.name, train_acc5.name, global_lr.name
]
test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name] test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name]
params = models.__dict__[args.model]().params params = models.__dict__[args.model]().params
for pass_id in range(params["num_epochs"]): for pass_id in range(params["num_epochs"]):
train_py_reader.start() train_py_reader.start()
...@@ -299,7 +314,9 @@ def train(args): ...@@ -299,7 +314,9 @@ def train(args):
try: try:
while True: while True:
t1 = time.time() t1 = time.time()
loss, acc1, acc5 = train_exe.run(fetch_list=train_fetch_list) loss, acc1, acc5, lr = train_exe.run(
fetch_list=train_fetch_list)
t2 = time.time() t2 = time.time()
period = t2 - t1 period = t2 - t1
loss = np.mean(np.array(loss)) loss = np.mean(np.array(loss))
...@@ -308,12 +325,14 @@ def train(args): ...@@ -308,12 +325,14 @@ def train(args):
train_info[0].append(loss) train_info[0].append(loss)
train_info[1].append(acc1) train_info[1].append(acc1)
train_info[2].append(acc5) train_info[2].append(acc5)
lr = np.mean(np.array(lr))
train_time.append(period) train_time.append(period)
if batch_id % 10 == 0: if batch_id % 10 == 0:
print("Pass {0}, trainbatch {1}, loss {2}, \ print("Pass {0}, trainbatch {1}, loss {2}, \
acc1 {3}, acc5 {4} time {5}" acc1 {3}, acc5 {4}, lr{5}, time {6}"
.format(pass_id, batch_id, loss, acc1, acc5, .format(pass_id, batch_id, loss, acc1, acc5, "%.5f" %
"%2.2f sec" % period)) lr, "%2.2f sec" % period))
sys.stdout.flush() sys.stdout.flush()
batch_id += 1 batch_id += 1
except fluid.core.EOFException: except fluid.core.EOFException:
...@@ -322,7 +341,8 @@ def train(args): ...@@ -322,7 +341,8 @@ def train(args):
train_loss = np.array(train_info[0]).mean() train_loss = np.array(train_info[0]).mean()
train_acc1 = np.array(train_info[1]).mean() train_acc1 = np.array(train_info[1]).mean()
train_acc5 = np.array(train_info[2]).mean() train_acc5 = np.array(train_info[2]).mean()
train_speed = np.array(train_time).mean() / (train_batch_size * device_num) train_speed = np.array(train_time).mean() / (train_batch_size *
device_num)
test_py_reader.start() test_py_reader.start()
...@@ -394,10 +414,7 @@ def train(args): ...@@ -394,10 +414,7 @@ def train(args):
def main(): def main():
args = parser.parse_args() args = parser.parse_args()
models_now = args.model_category set_models(args.model_category)
assert models_now in ["models", "models_name"], "{} is not in lists: {}".format(
models_now, ["models", "models_name"])
set_models(models_now)
print_arguments(args) print_arguments(args)
train(args) train(args)
......
...@@ -202,5 +202,5 @@ env CUDA_VISIBLE_DEVICE=0 python infer.py \ ...@@ -202,5 +202,5 @@ env CUDA_VISIBLE_DEVICE=0 python infer.py \
|模型| 错误率| |模型| 错误率|
|- |:-: | |- |:-: |
|[ocr_ctc_params](https://drive.google.com/open?id=1gsg2ODO2_F2pswXwW5MXpf8RY8-BMRyZ) | 22.3% | |[ocr_ctc_params](https://paddle-ocr-models.bj.bcebos.com/ocr_ctc.zip) | 22.3% |
|[ocr_attention_params](https://drive.google.com/open?id=1Bx7-94mngyTaMA5kVjzYHDPAdXxOYbRm) | 15.8%| |[ocr_attention_params](https://paddle-ocr-models.bj.bcebos.com/ocr_attention.zip) | 15.8%|
# Faster RCNN Objective Detection # RCNN Objective Detection
--- ---
## Table of Contents ## Table of Contents
...@@ -9,7 +9,6 @@ ...@@ -9,7 +9,6 @@
- [Training](#training) - [Training](#training)
- [Evaluation](#evaluation) - [Evaluation](#evaluation)
- [Inference and Visualization](#inference-and-visualization) - [Inference and Visualization](#inference-and-visualization)
- [Appendix](#appendix)
## Installation ## Installation
...@@ -17,17 +16,20 @@ Running sample code in this directory requires PaddelPaddle Fluid v.1.0.0 and la ...@@ -17,17 +16,20 @@ Running sample code in this directory requires PaddelPaddle Fluid v.1.0.0 and la
## Introduction ## Introduction
[Faster Rcnn](https://arxiv.org/abs/1506.01497) is a typical two stage detector. The total framework of network can be divided into four parts, as shown below: Region Convolutional Neural Network (RCNN) models are two stages detector. According to proposals and feature extraction, obtain class and more precise proposals.
<p align="center"> Now RCNN model contains two typical models: Faster RCNN and Mask RCNN.
<img src="image/Faster_RCNN.jpg" height=400 width=400 hspace='10'/> <br />
Faster RCNN model [Faster RCNN](https://arxiv.org/abs/1506.01497), The total framework of network can be divided into four parts:
</p>
1. Base conv layer. As a CNN objective dection, Faster RCNN extract feature maps using a basic convolutional network. The feature maps then can be shared by RPN and fc layers. This sampel uses [ResNet-50](https://arxiv.org/abs/1512.03385) as base conv layer. 1. Base conv layer. As a CNN objective dection, Faster RCNN extract feature maps using a basic convolutional network. The feature maps then can be shared by RPN and fc layers. This sampel uses [ResNet-50](https://arxiv.org/abs/1512.03385) as base conv layer.
2. Region Proposal Network (RPN). RPN generates proposals for detection。This block generates anchors by a set of size and ratio and classifies anchors into fore-ground and back-ground by softmax. Then refine anchors to obtain more precise proposals using box regression. 2. Region Proposal Network (RPN). RPN generates proposals for detection。This block generates anchors by a set of size and ratio and classifies anchors into fore-ground and back-ground by softmax. Then refine anchors to obtain more precise proposals using box regression.
3. RoI Align. This layer takes feature maps and proposals as input. The proposals are mapped to feature maps and pooled to the same size. The output are sent to fc layers for classification and regression. RoIPool and RoIAlign are used separately to this layer and it can be set in roi\_func in config.py. 3. RoI Align. This layer takes feature maps and proposals as input. The proposals are mapped to feature maps and pooled to the same size. The output are sent to fc layers for classification and regression. RoIPool and RoIAlign are used separately to this layer and it can be set in roi\_func in config.py.
4. Detection layer. Using the output of roi pooling to compute the class and locatoin of each proposal in two fc layers. 4. Detection layer. Using the output of roi pooling to compute the class and locatoin of each proposal in two fc layers.
[Mask RCNN](https://arxiv.org/abs/1703.06870) is a classical instance segmentation model and an extension of Faster RCNN
Mask RCNN is a two stage model as well. At the first stage, it generates proposals from input images. At the second stage, it obtains class result, bbox and mask which is the result from segmentation branch on original Faster RCNN model. It decouples the relation between mask and classification.
## Data preparation ## Data preparation
Train the model on [MS-COCO dataset](http://cocodataset.org/#download), download dataset as below: Train the model on [MS-COCO dataset](http://cocodataset.org/#download), download dataset as below:
...@@ -62,12 +64,24 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed. ...@@ -62,12 +64,24 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed.
After data preparation, one can start the training step by: After data preparation, one can start the training step by:
- Faster RCNN
python train.py \ python train.py \
--model_save_dir=output/ \ --model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model} --pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} --data_dir=${path_to_data} \
--MASK_ON=False
- Mask RCNN
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} \
--MASK_ON=True
- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train. - Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train.
- Set ```MASK_ON``` to choose Faster RCNN or Mask RCNN model.
- For more help on arguments: - For more help on arguments:
python train.py --help python train.py --help
...@@ -93,7 +107,6 @@ After data preparation, one can start the training step by: ...@@ -93,7 +107,6 @@ After data preparation, one can start the training step by:
* In first 500 iteration, the learning rate increases linearly from 0.00333 to 0.01. Then lr is decayed at 120000, 160000 iteration with multiplier 0.1, 0.01. The maximum iteration is 180000. Also, we released a 2x model which has 360000 iterations and lr is decayed at 240000, 320000. These configuration can be set by max_iter and lr_steps in config.py. * In first 500 iteration, the learning rate increases linearly from 0.00333 to 0.01. Then lr is decayed at 120000, 160000 iteration with multiplier 0.1, 0.01. The maximum iteration is 180000. Also, we released a 2x model which has 360000 iterations and lr is decayed at 240000, 320000. These configuration can be set by max_iter and lr_steps in config.py.
* Set the learning rate of bias to two times as global lr in non basic convolutional layers. * Set the learning rate of bias to two times as global lr in non basic convolutional layers.
* In basic convolutional layers, parameters of affine layers and res body do not update. * In basic convolutional layers, parameters of affine layers and res body do not update.
* Use Nvidia Tesla V100 8GPU, total time for training is about 40 hours.
## Evaluation ## Evaluation
...@@ -101,14 +114,27 @@ Evaluation is to evaluate the performance of a trained model. This sample provid ...@@ -101,14 +114,27 @@ Evaluation is to evaluate the performance of a trained model. This sample provid
`eval_coco_map.py` is the main executor for evalution, one can start evalution step by: `eval_coco_map.py` is the main executor for evalution, one can start evalution step by:
- Faster RCNN
python eval_coco_map.py \ python eval_coco_map.py \
--dataset=coco2017 \ --dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \ --pretrained_model=${path_to_pretrain_model} \
--MASK_ON=False
- Mask RCNN
python eval_coco_map.py \
--dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \
--MASK_ON=True
- Set ```export CUDA_VISIBLE_DEVICES=0``` to specifiy one GPU to eval. - Set ```export CUDA_VISIBLE_DEVICES=0``` to specifiy one GPU to eval.
- Set ```MASK_ON``` to choose Faster RCNN or Mask RCNN model.
Evalutaion result is shown as below: Evalutaion result is shown as below:
Faster RCNN:
| Model | RoI function | Batch size | Max iteration | mAP | | Model | RoI function | Batch size | Max iteration | mAP |
| :--------------- | :--------: | :------------: | :------------------: |------: | | :--------------- | :--------: | :------------: | :------------------: |------: |
| [Fluid RoIPool minibatch padding](http://paddlemodels.bj.bcebos.com/faster_rcnn/model_pool_minibatch_padding.tar.gz) | RoIPool | 8 | 180000 | 0.316 | | [Fluid RoIPool minibatch padding](http://paddlemodels.bj.bcebos.com/faster_rcnn/model_pool_minibatch_padding.tar.gz) | RoIPool | 8 | 180000 | 0.316 |
...@@ -121,6 +147,14 @@ Evalutaion result is shown as below: ...@@ -121,6 +147,14 @@ Evalutaion result is shown as below:
* Fluid RoIAlign no padding: Images without padding. * Fluid RoIAlign no padding: Images without padding.
* Fluid RoIAlign no padding 2x: Images without padding, train for 360000 iterations, learning rate is decayed at 240000, 320000. * Fluid RoIAlign no padding 2x: Images without padding, train for 360000 iterations, learning rate is decayed at 240000, 320000.
Mask RCNN:
| Model | Batch size | Max iteration | box mAP | mask mAP |
| :--------------- | :--------: | :------------: | :--------: |------: |
| [Fluid mask no padding](https://paddlemodels.bj.bcebos.com/faster_rcnn/Fluid_mask_no_padding.tar.gz) | 8 | 180000 | 0.359 | 0.314 |
* Fluid mask no padding: Use RoIAlign. Images without padding.
## Inference and Visualization ## Inference and Visualization
Inference is used to get prediction score or image features based on trained models. `infer.py` is the main executor for inference, one can start infer step by: Inference is used to get prediction score or image features based on trained models. `infer.py` is the main executor for inference, one can start infer step by:
...@@ -135,8 +169,12 @@ Inference is used to get prediction score or image features based on trained mod ...@@ -135,8 +169,12 @@ Inference is used to get prediction score or image features based on trained mod
Visualization of infer result is shown as below: Visualization of infer result is shown as below:
<p align="center"> <p align="center">
<img src="image/000000000139.jpg" height=300 width=400 hspace='10'/> <img src="image/000000000139.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <br />
<img src="image/000000203864.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000515077.jpg" height=300 width=400 hspace='10'/> <br />
Faster RCNN Visualization Examples Faster RCNN Visualization Examples
</p> </p>
<p align="center">
<img src="image/000000000139_mask.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517_mask.jpg" height=300 width=400 hspace='10'/> <br />
Mask RCNN Visualization Examples
</p>
# Faster RCNN 目标检测 # RCNN 系列目标检测
--- ---
## 内容 ## 内容
...@@ -9,25 +9,27 @@ ...@@ -9,25 +9,27 @@
- [模型训练](#模型训练) - [模型训练](#模型训练)
- [模型评估](#模型评估) - [模型评估](#模型评估)
- [模型推断及可视化](#模型推断及可视化) - [模型推断及可视化](#模型推断及可视化)
- [附录](#附录)
## 安装 ## 安装
在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.0.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/0.15.0/beginners_guide/install/install_doc.html#paddlepaddle)中的说明来更新PaddlePaddle。 在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.0.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/0.15.0/beginners_guide/install/install_doc.html#paddlepaddle)中的说明来更新PaddlePaddle。
## 简介 ## 简介
区域卷积神经网络(RCNN)系列模型为两阶段目标检测器。通过对图像生成候选区域,提取特征,判别特征类别并修正候选框位置。
RCNN系列目前包含两个代表模型:Faster RCNN,Mask RCNN
[Faster Rcnn](https://arxiv.org/abs/1506.01497) 是典型的两阶段目标检测器。如下图所示,整体网络可以分为4个主要内容: [Faster RCNN](https://arxiv.org/abs/1506.01497) 整体网络可以分为4个主要内容:
<p align="center">
<img src="image/Faster_RCNN.jpg" height=400 width=400 hspace='10'/> <br />
Faster RCNN 目标检测模型
</p>
1. 基础卷积层。作为一种卷积神经网络目标检测方法,Faster RCNN首先使用一组基础的卷积网络提取图像的特征图。特征图被后续RPN层和全连接层共享。本示例采用[ResNet-50](https://arxiv.org/abs/1512.03385)作为基础卷积层。 1. 基础卷积层。作为一种卷积神经网络目标检测方法,Faster RCNN首先使用一组基础的卷积网络提取图像的特征图。特征图被后续RPN层和全连接层共享。本示例采用[ResNet-50](https://arxiv.org/abs/1512.03385)作为基础卷积层。
2. 区域生成网络(RPN)。RPN网络用于生成候选区域(proposals)。该层通过一组固定的尺寸和比例得到一组锚点(anchors), 通过softmax判断锚点属于前景或者背景,再利用区域回归修正锚点从而获得精确的候选区域。 2. 区域生成网络(RPN)。RPN网络用于生成候选区域(proposals)。该层通过一组固定的尺寸和比例得到一组锚点(anchors), 通过softmax判断锚点属于前景或者背景,再利用区域回归修正锚点从而获得精确的候选区域。
3. RoI Align。该层收集输入的特征图和候选区域,将候选区域映射到特征图中并池化为统一大小的区域特征图,送入全连接层判定目标类别, 该层可选用RoIPool和RoIAlign两种方式,在config.py中设置roi\_func。 3. RoI Align。该层收集输入的特征图和候选区域,将候选区域映射到特征图中并池化为统一大小的区域特征图,送入全连接层判定目标类别, 该层可选用RoIPool和RoIAlign两种方式,在config.py中设置roi\_func。
4. 检测层。利用区域特征图计算候选区域的类别,同时再次通过区域回归获得检测框最终的精确位置。 4. 检测层。利用区域特征图计算候选区域的类别,同时再次通过区域回归获得检测框最终的精确位置。
[Mask RCNN](https://arxiv.org/abs/1703.06870) 扩展自Faster RCNN,是经典的实例分割模型。
Mask RCNN同样为两阶段框架,第一阶段扫描图像生成候选框;第二阶段根据候选框得到分类结果,边界框,同时在原有Faster RCNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕。
## 数据准备 ## 数据准备
[MS-COCO数据集](http://cocodataset.org/#download)上进行训练,通过如下方式下载数据集。 [MS-COCO数据集](http://cocodataset.org/#download)上进行训练,通过如下方式下载数据集。
...@@ -61,12 +63,24 @@ Faster RCNN 目标检测模型 ...@@ -61,12 +63,24 @@ Faster RCNN 目标检测模型
数据准备完毕后,可以通过如下的方式启动训练: 数据准备完毕后,可以通过如下的方式启动训练:
- Faster RCNN
python train.py \ python train.py \
--model_save_dir=output/ \ --model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model} --pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} --data_dir=${path_to_data} \
--MASK_ON=False
- Mask RCNN
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} \
--MASK_ON=True
- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。 - 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 通过设置```MASK_ON```选择Faster RCNN和Mask RCNN模型。
- 可选参数见: - 可选参数见:
python train.py --help python train.py --help
...@@ -83,11 +97,10 @@ Faster RCNN 目标检测模型 ...@@ -83,11 +97,10 @@ Faster RCNN 目标检测模型
**训练策略:** **训练策略:**
* 采用momentum优化算法训练Faster RCNN,momentum=0.9。 * 采用momentum优化算法训练,momentum=0.9。
* 权重衰减系数为0.0001,前500轮学习率从0.00333线性增加至0.01。在120000,160000轮时使用0.1,0.01乘子进行学习率衰减,最大训练180000轮。同时我们也提供了2x模型,该模型采用更多的迭代轮数进行训练,训练360000轮,学习率在240000,320000轮衰减,其他参数不变,训练最大轮数和学习率策略可以在config.py中对max_iter和lr_steps进行设置。 * 权重衰减系数为0.0001,前500轮学习率从0.00333线性增加至0.01。在120000,160000轮时使用0.1,0.01乘子进行学习率衰减,最大训练180000轮。同时我们也提供了2x模型,该模型采用更多的迭代轮数进行训练,训练360000轮,学习率在240000,320000轮衰减,其他参数不变,训练最大轮数和学习率策略可以在config.py中对max_iter和lr_steps进行设置。
* 非基础卷积层卷积bias学习率为整体学习率2倍。 * 非基础卷积层卷积bias学习率为整体学习率2倍。
* 基础卷积层中,affine_layers参数不更新,res2层参数不更新。 * 基础卷积层中,affine_layers参数不更新,res2层参数不更新。
* 使用Nvidia Tesla V100 8卡并行,总共训练时长大约40小时。
## 模型评估 ## 模型评估
...@@ -95,14 +108,27 @@ Faster RCNN 目标检测模型 ...@@ -95,14 +108,27 @@ Faster RCNN 目标检测模型
`eval_coco_map.py`是评估模块的主要执行程序,调用示例如下: `eval_coco_map.py`是评估模块的主要执行程序,调用示例如下:
- Faster RCNN
python eval_coco_map.py \ python eval_coco_map.py \
--dataset=coco2017 \ --dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \ --pretrained_model=${path_to_pretrain_model} \
--MASK_ON=False
- Mask RCNN
python eval_coco_map.py \
--dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \
--MASK_ON=True
- 通过设置export CUDA\_VISIBLE\_DEVICES=0指定单卡GPU评估。 - 通过设置export CUDA\_VISIBLE\_DEVICES=0指定单卡GPU评估。
- 通过设置```MASK_ON```选择Faster RCNN和Mask RCNN模型。
下表为模型评估结果: 下表为模型评估结果:
Faster RCNN
| 模型 | RoI处理方式 | 批量大小 | 迭代次数 | mAP | | 模型 | RoI处理方式 | 批量大小 | 迭代次数 | mAP |
| :--------------- | :--------: | :------------: | :------------------: |------: | | :--------------- | :--------: | :------------: | :------------------: |------: |
| [Fluid RoIPool minibatch padding](http://paddlemodels.bj.bcebos.com/faster_rcnn/model_pool_minibatch_padding.tar.gz) | RoIPool | 8 | 180000 | 0.316 | | [Fluid RoIPool minibatch padding](http://paddlemodels.bj.bcebos.com/faster_rcnn/model_pool_minibatch_padding.tar.gz) | RoIPool | 8 | 180000 | 0.316 |
...@@ -117,6 +143,14 @@ Faster RCNN 目标检测模型 ...@@ -117,6 +143,14 @@ Faster RCNN 目标检测模型
* Fluid RoIAlign no padding: 使用RoIAlign,不对图像做填充处理。 * Fluid RoIAlign no padding: 使用RoIAlign,不对图像做填充处理。
* Fluid RoIAlign no padding 2x: 使用RoIAlign,不对图像做填充处理。训练360000轮,学习率在240000,320000轮衰减。 * Fluid RoIAlign no padding 2x: 使用RoIAlign,不对图像做填充处理。训练360000轮,学习率在240000,320000轮衰减。
Mask RCNN:
| 模型 | 批量大小 | 迭代次数 | box mAP | mask mAP |
| :--------------- | :--------: | :------------: | :--------: |------: |
| [Fluid mask no padding](https://paddlemodels.bj.bcebos.com/faster_rcnn/Fluid_mask_no_padding.tar.gz) | 8 | 180000 | 0.359 | 0.314 |
* Fluid mask no padding: 使用RoIAlign,不对图像做填充处理
## 模型推断及可视化 ## 模型推断及可视化
模型推断可以获取图像中的物体及其对应的类别,`infer.py`是主要执行程序,调用示例如下: 模型推断可以获取图像中的物体及其对应的类别,`infer.py`是主要执行程序,调用示例如下:
...@@ -131,8 +165,12 @@ Faster RCNN 目标检测模型 ...@@ -131,8 +165,12 @@ Faster RCNN 目标检测模型
下图为模型可视化预测结果: 下图为模型可视化预测结果:
<p align="center"> <p align="center">
<img src="image/000000000139.jpg" height=300 width=400 hspace='10'/> <img src="image/000000000139.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <br />
<img src="image/000000203864.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000515077.jpg" height=300 width=400 hspace='10'/> <br />
Faster RCNN 预测可视化 Faster RCNN 预测可视化
</p> </p>
<p align="center">
<img src="image/000000000139_mask.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517_mask.jpg" height=300 width=400 hspace='10'/> <br />
Mask RCNN 预测可视化
</p>
...@@ -6,18 +6,19 @@ sys.path.append(os.environ['ceroot']) ...@@ -6,18 +6,19 @@ sys.path.append(os.environ['ceroot'])
from kpi import CostKpi from kpi import CostKpi
from kpi import DurationKpi from kpi import DurationKpi
each_pass_duration_card1_kpi = DurationKpi(
each_pass_duration_card1_kpi = DurationKpi('each_pass_duration_card1', 0.08, 0, actived=True) 'each_pass_duration_card1', 0.08, 0, actived=True)
train_loss_card1_kpi = CostKpi('train_loss_card1', 0.08, 0) train_loss_card1_kpi = CostKpi('train_loss_card1', 0.08, 0)
each_pass_duration_card4_kpi = DurationKpi('each_pass_duration_card4', 0.08, 0, actived=True) each_pass_duration_card4_kpi = DurationKpi(
'each_pass_duration_card4', 0.08, 0, actived=True)
train_loss_card4_kpi = CostKpi('train_loss_card4', 0.08, 0) train_loss_card4_kpi = CostKpi('train_loss_card4', 0.08, 0)
tracking_kpis = [ tracking_kpis = [
each_pass_duration_card1_kpi, each_pass_duration_card1_kpi,
train_loss_card1_kpi, train_loss_card1_kpi,
each_pass_duration_card4_kpi, each_pass_duration_card4_kpi,
train_loss_card4_kpi, train_loss_card4_kpi,
] ]
def parse_log(log): def parse_log(log):
......
...@@ -69,6 +69,7 @@ def clip_xyxy_to_image(x1, y1, x2, y2, height, width): ...@@ -69,6 +69,7 @@ def clip_xyxy_to_image(x1, y1, x2, y2, height, width):
y2 = np.minimum(height - 1., np.maximum(0., y2)) y2 = np.minimum(height - 1., np.maximum(0., y2))
return x1, y1, x2, y2 return x1, y1, x2, y2
def nms(dets, thresh): def nms(dets, thresh):
"""Apply classic DPM-style greedy NMS.""" """Apply classic DPM-style greedy NMS."""
if dets.shape[0] == 0: if dets.shape[0] == 0:
...@@ -123,3 +124,21 @@ def nms(dets, thresh): ...@@ -123,3 +124,21 @@ def nms(dets, thresh):
return np.where(suppressed == 0)[0] return np.where(suppressed == 0)[0]
def expand_boxes(boxes, scale):
"""Expand an array of boxes by a given scale."""
w_half = (boxes[:, 2] - boxes[:, 0]) * .5
h_half = (boxes[:, 3] - boxes[:, 1]) * .5
x_c = (boxes[:, 2] + boxes[:, 0]) * .5
y_c = (boxes[:, 3] + boxes[:, 1]) * .5
w_half *= scale
h_half *= scale
boxes_exp = np.zeros(boxes.shape)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# Detectron
# Copyright (c) 2017-present, Facebook, Inc.
# Licensed under the Apache License, Version 2.0;
# Written by Ross Girshick
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
def colormap(rgb=False):
color_list = np.array([
0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494,
0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078,
0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000,
1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000,
0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667,
0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000,
0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000,
1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000,
0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500,
0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667,
0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333,
0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000,
0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333,
0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000,
1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000,
1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.167,
0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000,
0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000,
0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000,
0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000,
0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833,
0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.286,
0.286, 0.286, 0.429, 0.429, 0.429, 0.571, 0.571, 0.571, 0.714, 0.714,
0.714, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000
]).astype(np.float32)
color_list = color_list.reshape((-1, 3)) * 255
if not rgb:
color_list = color_list[:, ::-1]
return color_list
...@@ -90,6 +90,9 @@ _C.TRAIN.freeze_at = 2 ...@@ -90,6 +90,9 @@ _C.TRAIN.freeze_at = 2
# min area of ground truth box # min area of ground truth box
_C.TRAIN.gt_min_area = -1 _C.TRAIN.gt_min_area = -1
# Use horizontally-flipped images during training?
_C.TRAIN.use_flipped = True
# #
# Inference options # Inference options
# #
...@@ -120,7 +123,7 @@ _C.TEST.rpn_post_nms_top_n = 1000 ...@@ -120,7 +123,7 @@ _C.TEST.rpn_post_nms_top_n = 1000
_C.TEST.rpn_min_size = 0.0 _C.TEST.rpn_min_size = 0.0
# max number of detections # max number of detections
_C.TEST.detectiions_per_im = 100 _C.TEST.detections_per_im = 100
# NMS threshold used on RPN proposals # NMS threshold used on RPN proposals
_C.TEST.rpn_nms_thresh = 0.7 _C.TEST.rpn_nms_thresh = 0.7
...@@ -129,6 +132,9 @@ _C.TEST.rpn_nms_thresh = 0.7 ...@@ -129,6 +132,9 @@ _C.TEST.rpn_nms_thresh = 0.7
# Model options # Model options
# #
# Whether use mask rcnn head
_C.MASK_ON = True
# weight for bbox regression targets # weight for bbox regression targets
_C.bbox_reg_weights = [0.1, 0.1, 0.2, 0.2] _C.bbox_reg_weights = [0.1, 0.1, 0.2, 0.2]
...@@ -156,6 +162,15 @@ _C.roi_resolution = 14 ...@@ -156,6 +162,15 @@ _C.roi_resolution = 14
# spatial scale # spatial scale
_C.spatial_scale = 1. / 16. _C.spatial_scale = 1. / 16.
# resolution to represent mask labels
_C.resolution = 14
# Number of channels in the mask head
_C.dim_reduced = 256
# Threshold for converting soft masks to hard masks
_C.mrcnn_thresh_binarize = 0.5
# #
# SOLVER options # SOLVER options
# #
...@@ -204,12 +219,6 @@ _C.pixel_means = [102.9801, 115.9465, 122.7717] ...@@ -204,12 +219,6 @@ _C.pixel_means = [102.9801, 115.9465, 122.7717]
# clip box to prevent overflowing # clip box to prevent overflowing
_C.bbox_clip = np.log(1000. / 16.) _C.bbox_clip = np.log(1000. / 16.)
# dataset path
_C.train_file_list = 'annotations/instances_train2017.json'
_C.train_data_dir = 'train2017'
_C.val_file_list = 'annotations/instances_val2017.json'
_C.val_data_dir = 'val2017'
def merge_cfg_from_args(args, mode): def merge_cfg_from_args(args, mode):
"""Merge config keys, values in args into the global config.""" """Merge config keys, values in args into the global config."""
......
...@@ -18,8 +18,7 @@ from __future__ import print_function ...@@ -18,8 +18,7 @@ from __future__ import print_function
import os import os
import time import time
import numpy as np import numpy as np
from eval_helper import get_nmsed_box from eval_helper import *
from eval_helper import get_dt_res
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import reader import reader
...@@ -30,21 +29,21 @@ import json ...@@ -30,21 +29,21 @@ import json
from pycocotools.coco import COCO from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval, Params from pycocotools.cocoeval import COCOeval, Params
from config import cfg from config import cfg
from roidbs import DatasetPath
def eval(): def eval():
if '2014' in cfg.dataset:
test_list = 'annotations/instances_val2014.json' data_path = DatasetPath('val')
elif '2017' in cfg.dataset: test_list = data_path.get_file_list()
test_list = 'annotations/instances_val2017.json'
image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size] image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
class_nums = cfg.class_num class_nums = cfg.class_num
devices = os.getenv("CUDA_VISIBLE_DEVICES") or "" devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(",")) devices_num = len(devices.split(","))
total_batch_size = devices_num * cfg.TRAIN.im_per_batch total_batch_size = devices_num * cfg.TRAIN.im_per_batch
cocoGt = COCO(os.path.join(cfg.data_dir, test_list)) cocoGt = COCO(test_list)
numId_to_catId_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())} num_id_to_cat_id_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
category_ids = cocoGt.getCatIds() category_ids = cocoGt.getCatIds()
label_list = { label_list = {
item['id']: item['name'] item['id']: item['name']
...@@ -52,51 +51,88 @@ def eval(): ...@@ -52,51 +51,88 @@ def eval():
} }
label_list[0] = ['background'] label_list[0] = ['background']
model = model_builder.FasterRCNN( model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body, add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head, add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=False, use_pyreader=False,
is_train=False) mode='val')
model.build_model(image_shape) model.build_model(image_shape)
rpn_rois, confs, locs = model.eval_out() pred_boxes = model.eval_bbox_out()
if cfg.MASK_ON:
masks = model.eval_mask_out()
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# yapf: disable # yapf: disable
if cfg.pretrained_model: if cfg.pretrained_model:
def if_exist(var): def if_exist(var):
return os.path.exists(os.path.join(cfg.pretrained_model, var.name)) return os.path.exists(os.path.join(cfg.pretrained_model, var.name))
fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist) fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)
# yapf: enable # yapf: enable
test_reader = reader.test(total_batch_size) test_reader = reader.test(total_batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
dts_res = [] dts_res = []
fetch_list = [rpn_rois, confs, locs] segms_res = []
if cfg.MASK_ON:
fetch_list = [pred_boxes, masks]
else:
fetch_list = [pred_boxes]
eval_start = time.time()
for batch_id, batch_data in enumerate(test_reader()): for batch_id, batch_data in enumerate(test_reader()):
start = time.time() start = time.time()
im_info = [] im_info = []
for data in batch_data: for data in batch_data:
im_info.append(data[1]) im_info.append(data[1])
rpn_rois_v, confs_v, locs_v = exe.run( results = exe.run(fetch_list=[v.name for v in fetch_list],
fetch_list=[v.name for v in fetch_list], feed=feeder.feed(batch_data),
feed=feeder.feed(batch_data), return_numpy=False)
return_numpy=False)
new_lod, nmsed_out = get_nmsed_box(rpn_rois_v, confs_v, locs_v, pred_boxes_v = results[0]
class_nums, im_info, if cfg.MASK_ON:
numId_to_catId_map) masks_v = results[1]
dts_res += get_dt_res(total_batch_size, new_lod, nmsed_out, batch_data) new_lod = pred_boxes_v.lod()
nmsed_out = pred_boxes_v
dts_res += get_dt_res(total_batch_size, new_lod[0], nmsed_out,
batch_data, num_id_to_cat_id_map)
if cfg.MASK_ON and np.array(masks_v).shape != (1, 1):
segms_out = segm_results(nmsed_out, masks_v, im_info)
segms_res += get_segms_res(total_batch_size, new_lod[0], segms_out,
batch_data, num_id_to_cat_id_map)
end = time.time() end = time.time()
print('batch id: {}, time: {}'.format(batch_id, end - start)) print('batch id: {}, time: {}'.format(batch_id, end - start))
with open("detection_result.json", 'w') as outfile: eval_end = time.time()
total_time = eval_end - eval_start
print('average time of eval is: {}'.format(total_time / (batch_id + 1)))
assert len(dts_res) > 0, "The number of valid bbox detected is zero.\n \
Please use reasonable model and check input data."
assert len(segms_res) > 0, "The number of valid mask detected is zero.\n \
Please use reasonable model and check input data.."
with open("detection_bbox_result.json", 'w') as outfile:
json.dump(dts_res, outfile) json.dump(dts_res, outfile)
print("start evaluate using coco api") print("start evaluate bbox using coco api")
cocoDt = cocoGt.loadRes("detection_result.json") cocoDt = cocoGt.loadRes("detection_bbox_result.json")
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.evaluate() cocoEval.evaluate()
cocoEval.accumulate() cocoEval.accumulate()
cocoEval.summarize() cocoEval.summarize()
if cfg.MASK_ON:
with open("detection_segms_result.json", 'w') as outfile:
json.dump(segms_res, outfile)
print("start evaluate mask using coco api")
cocoDt = cocoGt.loadRes("detection_segms_result.json")
cocoEval = COCOeval(cocoGt, cocoDt, 'segm')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
if __name__ == '__main__': if __name__ == '__main__':
args = parse_args() args = parse_args()
......
...@@ -21,6 +21,10 @@ from PIL import Image ...@@ -21,6 +21,10 @@ from PIL import Image
from PIL import ImageDraw from PIL import ImageDraw
from PIL import ImageFont from PIL import ImageFont
from config import cfg from config import cfg
import pycocotools.mask as mask_util
import six
from colormap import colormap
import cv2
def box_decoder(deltas, boxes, weights): def box_decoder(deltas, boxes, weights):
...@@ -80,8 +84,7 @@ def clip_tiled_boxes(boxes, im_shape): ...@@ -80,8 +84,7 @@ def clip_tiled_boxes(boxes, im_shape):
return boxes return boxes
def get_nmsed_box(rpn_rois, confs, locs, class_nums, im_info, def get_nmsed_box(rpn_rois, confs, locs, class_nums, im_info):
numId_to_catId_map):
lod = rpn_rois.lod()[0] lod = rpn_rois.lod()[0]
rpn_rois_v = np.array(rpn_rois) rpn_rois_v = np.array(rpn_rois)
variance_v = np.array(cfg.bbox_reg_weights) variance_v = np.array(cfg.bbox_reg_weights)
...@@ -106,38 +109,41 @@ def get_nmsed_box(rpn_rois, confs, locs, class_nums, im_info, ...@@ -106,38 +109,41 @@ def get_nmsed_box(rpn_rois, confs, locs, class_nums, im_info,
inds = np.where(scores_n[:, j] > cfg.TEST.score_thresh)[0] inds = np.where(scores_n[:, j] > cfg.TEST.score_thresh)[0]
scores_j = scores_n[inds, j] scores_j = scores_n[inds, j]
rois_j = rois_n[inds, j * 4:(j + 1) * 4] rois_j = rois_n[inds, j * 4:(j + 1) * 4]
dets_j = np.hstack((rois_j, scores_j[:, np.newaxis])).astype( dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(
np.float32, copy=False) np.float32, copy=False)
keep = box_utils.nms(dets_j, cfg.TEST.nms_thresh) keep = box_utils.nms(dets_j, cfg.TEST.nms_thresh)
nms_dets = dets_j[keep, :] nms_dets = dets_j[keep, :]
#add labels #add labels
cat_id = numId_to_catId_map[j] label = np.array([j for _ in range(len(keep))])
label = np.array([cat_id for _ in range(len(keep))])
nms_dets = np.hstack((nms_dets, label[:, np.newaxis])).astype( nms_dets = np.hstack((nms_dets, label[:, np.newaxis])).astype(
np.float32, copy=False) np.float32, copy=False)
cls_boxes[j] = nms_dets cls_boxes[j] = nms_dets
# Limit to max_per_image detections **over all classes** # Limit to max_per_image detections **over all classes**
image_scores = np.hstack( image_scores = np.hstack(
[cls_boxes[j][:, -2] for j in range(1, class_nums)]) [cls_boxes[j][:, 1] for j in range(1, class_nums)])
if len(image_scores) > cfg.TEST.detectiions_per_im: if len(image_scores) > cfg.TEST.detections_per_im:
image_thresh = np.sort(image_scores)[-cfg.TEST.detectiions_per_im] image_thresh = np.sort(image_scores)[-cfg.TEST.detections_per_im]
for j in range(1, class_nums): for j in range(1, class_nums):
keep = np.where(cls_boxes[j][:, -2] >= image_thresh)[0] keep = np.where(cls_boxes[j][:, 1] >= image_thresh)[0]
cls_boxes[j] = cls_boxes[j][keep, :] cls_boxes[j] = cls_boxes[j][keep, :]
im_results_n = np.vstack([cls_boxes[j] for j in range(1, class_nums)]) im_results_n = np.vstack([cls_boxes[j] for j in range(1, class_nums)])
im_results[i] = im_results_n im_results[i] = im_results_n
new_lod.append(len(im_results_n) + new_lod[-1]) new_lod.append(len(im_results_n) + new_lod[-1])
boxes = im_results_n[:, :-2] boxes = im_results_n[:, 2:]
scores = im_results_n[:, -2] scores = im_results_n[:, 1]
labels = im_results_n[:, -1] labels = im_results_n[:, 0]
im_results = np.vstack([im_results[k] for k in range(len(lod) - 1)]) im_results = np.vstack([im_results[k] for k in range(len(lod) - 1)])
return new_lod, im_results return new_lod, im_results
def get_dt_res(batch_size, lod, nmsed_out, data): def get_dt_res(batch_size, lod, nmsed_out, data, num_id_to_cat_id_map):
dts_res = [] dts_res = []
nmsed_out_v = np.array(nmsed_out) nmsed_out_v = np.array(nmsed_out)
if nmsed_out_v.shape == (
1,
1, ):
return dts_res
assert (len(lod) == batch_size + 1), \ assert (len(lod) == batch_size + 1), \
"Error Lod Tensor offset dimension. Lod({}) vs. batch_size({})"\ "Error Lod Tensor offset dimension. Lod({}) vs. batch_size({})"\
.format(len(lod), batch_size) .format(len(lod), batch_size)
...@@ -150,7 +156,8 @@ def get_dt_res(batch_size, lod, nmsed_out, data): ...@@ -150,7 +156,8 @@ def get_dt_res(batch_size, lod, nmsed_out, data):
for j in range(dt_num_this_img): for j in range(dt_num_this_img):
dt = nmsed_out_v[k] dt = nmsed_out_v[k]
k = k + 1 k = k + 1
xmin, ymin, xmax, ymax, score, category_id = dt.tolist() num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
category_id = num_id_to_cat_id_map[num_id]
w = xmax - xmin + 1 w = xmax - xmin + 1
h = ymax - ymin + 1 h = ymax - ymin + 1
bbox = [xmin, ymin, w, h] bbox = [xmin, ymin, w, h]
...@@ -164,24 +171,131 @@ def get_dt_res(batch_size, lod, nmsed_out, data): ...@@ -164,24 +171,131 @@ def get_dt_res(batch_size, lod, nmsed_out, data):
return dts_res return dts_res
def draw_bounding_box_on_image(image_path, nms_out, draw_threshold, label_list): def get_segms_res(batch_size, lod, segms_out, data, num_id_to_cat_id_map):
image = Image.open(image_path) segms_res = []
segms_out_v = np.array(segms_out)
k = 0
for i in range(batch_size):
dt_num_this_img = lod[i + 1] - lod[i]
image_id = int(data[i][-1])
for j in range(dt_num_this_img):
dt = segms_out_v[k]
k = k + 1
segm, num_id, score = dt.tolist()
cat_id = num_id_to_cat_id_map[num_id]
if six.PY3:
if 'counts' in segm:
segm['counts'] = segm['counts'].decode("utf8")
segm_res = {
'image_id': image_id,
'category_id': cat_id,
'segmentation': segm,
'score': score
}
segms_res.append(segm_res)
return segms_res
def draw_bounding_box_on_image(image_path,
nms_out,
draw_threshold,
label_list,
num_id_to_cat_id_map,
image=None):
if image is None:
image = Image.open(image_path)
draw = ImageDraw.Draw(image) draw = ImageDraw.Draw(image)
im_width, im_height = image.size im_width, im_height = image.size
for dt in nms_out: for dt in np.array(nms_out):
xmin, ymin, xmax, ymax, score, category_id = dt.tolist() num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
category_id = num_id_to_cat_id_map[num_id]
if score < draw_threshold: if score < draw_threshold:
continue continue
bbox = dt[:4]
xmin, ymin, xmax, ymax = bbox
draw.line( draw.line(
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
(xmin, ymin)], (xmin, ymin)],
width=4, width=2,
fill='red') fill='red')
if image.mode == 'RGB': if image.mode == 'RGB':
draw.text((xmin, ymin), label_list[int(category_id)], (255, 255, 0)) draw.text((xmin, ymin), label_list[int(category_id)], (255, 255, 0))
image_name = image_path.split('/')[-1] image_name = image_path.split('/')[-1]
print("image with bbox drawed saved as {}".format(image_name)) print("image with bbox drawed saved as {}".format(image_name))
image.save(image_name) image.save(image_name)
def draw_mask_on_image(image_path, segms_out, draw_threshold, alpha=0.7):
image = Image.open(image_path)
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
mask_color_id = 0
w_ratio = .4
image = np.array(image).astype('float32')
for dt in np.array(segms_out):
segm, num_id, score = dt.tolist()
if score < draw_threshold:
continue
mask = mask_util.decode(segm) * 255
color_list = colormap(rgb=True)
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
image[idx[0], idx[1], :] *= 1.0 - alpha
image[idx[0], idx[1], :] += alpha * color_mask
image = Image.fromarray(image.astype('uint8'))
return image
def segm_results(im_results, masks, im_info):
im_results = np.array(im_results)
class_num = cfg.class_num
M = cfg.resolution
scale = (M + 2.0) / M
lod = masks.lod()[0]
masks_v = np.array(masks)
boxes = im_results[:, 2:]
labels = im_results[:, 0]
segms_results = [[] for _ in range(len(lod) - 1)]
sum = 0
for i in range(len(lod) - 1):
im_results_n = im_results[lod[i]:lod[i + 1]]
cls_segms = []
masks_n = masks_v[lod[i]:lod[i + 1]]
boxes_n = boxes[lod[i]:lod[i + 1]]
labels_n = labels[lod[i]:lod[i + 1]]
im_h = int(round(im_info[i][0] / im_info[i][2]))
im_w = int(round(im_info[i][1] / im_info[i][2]))
boxes_n = box_utils.expand_boxes(boxes_n, scale)
boxes_n = boxes_n.astype(np.int32)
padded_mask = np.zeros((M + 2, M + 2), dtype=np.float32)
for j in range(len(im_results_n)):
class_id = int(labels_n[j])
padded_mask[1:-1, 1:-1] = masks_n[j, class_id, :, :]
ref_box = boxes_n[j, :]
w = ref_box[2] - ref_box[0] + 1
h = ref_box[3] - ref_box[1] + 1
w = np.maximum(w, 1)
h = np.maximum(h, 1)
mask = cv2.resize(padded_mask, (w, h))
mask = np.array(mask > cfg.mrcnn_thresh_binarize, dtype=np.uint8)
im_mask = np.zeros((im_h, im_w), dtype=np.uint8)
x_0 = max(ref_box[0], 0)
x_1 = min(ref_box[2] + 1, im_w)
y_0 = max(ref_box[1], 0)
y_1 = min(ref_box[3] + 1, im_h)
im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - ref_box[1]):(y_1 - ref_box[
1]), (x_0 - ref_box[0]):(x_1 - ref_box[0])]
sum += im_mask.sum()
rle = mask_util.encode(
np.array(
im_mask[:, :, np.newaxis], order='F'))[0]
cls_segms.append(rle)
segms_results[i] = np.array(cls_segms)[:, np.newaxis]
segms_results = np.vstack([segms_results[k] for k in range(len(lod) - 1)])
im_results = np.hstack([segms_results, im_results])
return im_results[:, :3]
import os import os
import time import time
import numpy as np import numpy as np
from eval_helper import get_nmsed_box from eval_helper import *
from eval_helper import get_dt_res
from eval_helper import draw_bounding_box_on_image
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import reader import reader
...@@ -14,17 +12,16 @@ import json ...@@ -14,17 +12,16 @@ import json
from pycocotools.coco import COCO from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval, Params from pycocotools.cocoeval import COCOeval, Params
from config import cfg from config import cfg
from roidbs import DatasetPath
def infer(): def infer():
if '2014' in cfg.dataset: data_path = DatasetPath('val')
test_list = 'annotations/instances_val2014.json' test_list = data_path.get_file_list()
elif '2017' in cfg.dataset:
test_list = 'annotations/instances_val2017.json'
cocoGt = COCO(os.path.join(cfg.data_dir, test_list)) cocoGt = COCO(test_list)
numId_to_catId_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())} num_id_to_cat_id_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
category_ids = cocoGt.getCatIds() category_ids = cocoGt.getCatIds()
label_list = { label_list = {
item['id']: item['name'] item['id']: item['name']
...@@ -34,13 +31,15 @@ def infer(): ...@@ -34,13 +31,15 @@ def infer():
image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size] image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
class_nums = cfg.class_num class_nums = cfg.class_num
model = model_builder.FasterRCNN( model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body, add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head, add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=False, use_pyreader=False,
is_train=False) mode='infer')
model.build_model(image_shape) model.build_model(image_shape)
rpn_rois, confs, locs = model.eval_out() pred_boxes = model.eval_bbox_out()
if cfg.MASK_ON:
masks = model.eval_mask_out()
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
# yapf: disable # yapf: disable
...@@ -53,17 +52,29 @@ def infer(): ...@@ -53,17 +52,29 @@ def infer():
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
dts_res = [] dts_res = []
fetch_list = [rpn_rois, confs, locs] segms_res = []
if cfg.MASK_ON:
fetch_list = [pred_boxes, masks]
else:
fetch_list = [pred_boxes]
data = next(infer_reader()) data = next(infer_reader())
im_info = [data[0][1]] im_info = [data[0][1]]
rpn_rois_v, confs_v, locs_v = exe.run( result = exe.run(fetch_list=[v.name for v in fetch_list],
fetch_list=[v.name for v in fetch_list], feed=feeder.feed(data),
feed=feeder.feed(data), return_numpy=False)
return_numpy=False) pred_boxes_v = result[0]
new_lod, nmsed_out = get_nmsed_box(rpn_rois_v, confs_v, locs_v, class_nums, if cfg.MASK_ON:
im_info, numId_to_catId_map) masks_v = result[1]
new_lod = pred_boxes_v.lod()
nmsed_out = pred_boxes_v
path = os.path.join(cfg.image_path, cfg.image_name) path = os.path.join(cfg.image_path, cfg.image_name)
draw_bounding_box_on_image(path, nmsed_out, cfg.draw_threshold, label_list) image = None
if cfg.MASK_ON:
segms_out = segm_results(nmsed_out, masks_v, im_info)
image = draw_mask_on_image(path, segms_out, cfg.draw_threshold)
draw_bounding_box_on_image(path, nmsed_out, cfg.draw_threshold, label_list,
num_id_to_cat_id_map, image)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -16,23 +16,23 @@ import paddle.fluid as fluid ...@@ -16,23 +16,23 @@ import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant from paddle.fluid.initializer import Constant
from paddle.fluid.initializer import Normal from paddle.fluid.initializer import Normal
from paddle.fluid.initializer import MSRA
from paddle.fluid.regularizer import L2Decay from paddle.fluid.regularizer import L2Decay
from config import cfg from config import cfg
class FasterRCNN(object): class RCNN(object):
def __init__(self, def __init__(self,
add_conv_body_func=None, add_conv_body_func=None,
add_roi_box_head_func=None, add_roi_box_head_func=None,
is_train=True, mode='train',
use_pyreader=True, use_pyreader=True,
use_random=True): use_random=True):
self.add_conv_body_func = add_conv_body_func self.add_conv_body_func = add_conv_body_func
self.add_roi_box_head_func = add_roi_box_head_func self.add_roi_box_head_func = add_roi_box_head_func
self.is_train = is_train self.mode = mode
self.use_pyreader = use_pyreader self.use_pyreader = use_pyreader
self.use_random = use_random self.use_random = use_random
#self.py_reader = None
def build_model(self, image_shape): def build_model(self, image_shape):
self.build_input(image_shape) self.build_input(image_shape)
...@@ -41,31 +41,62 @@ class FasterRCNN(object): ...@@ -41,31 +41,62 @@ class FasterRCNN(object):
self.rpn_heads(body_conv) self.rpn_heads(body_conv)
# Fast RCNN # Fast RCNN
self.fast_rcnn_heads(body_conv) self.fast_rcnn_heads(body_conv)
if self.mode != 'train':
self.eval_bbox()
# Mask RCNN
if cfg.MASK_ON:
self.mask_rcnn_heads(body_conv)
def loss(self): def loss(self):
losses = []
# Fast RCNN loss # Fast RCNN loss
loss_cls, loss_bbox = self.fast_rcnn_loss() loss_cls, loss_bbox = self.fast_rcnn_loss()
# RPN loss # RPN loss
rpn_cls_loss, rpn_reg_loss = self.rpn_loss() rpn_cls_loss, rpn_reg_loss = self.rpn_loss()
return loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss, losses = [loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss]
rkeys = ['loss', 'loss_cls', 'loss_bbox', \
'loss_rpn_cls', 'loss_rpn_bbox',]
if cfg.MASK_ON:
loss_mask = self.mask_rcnn_loss()
losses = losses + [loss_mask]
rkeys = rkeys + ["loss_mask"]
loss = fluid.layers.sum(losses)
rloss = [loss] + losses
return rloss, rkeys
def eval_out(self): def eval_mask_out(self):
cls_prob = fluid.layers.softmax(self.cls_score, use_cudnn=False) return self.mask_fcn_logits
return [self.rpn_rois, cls_prob, self.bbox_pred]
def eval_bbox_out(self):
return self.pred_result
def build_input(self, image_shape): def build_input(self, image_shape):
if self.use_pyreader: if self.use_pyreader:
in_shapes = [[-1] + image_shape, [-1, 4], [-1, 1], [-1, 1],
[-1, 3], [-1, 1]]
lod_levels = [0, 1, 1, 1, 0, 0]
dtypes = [
'float32', 'float32', 'int32', 'int32', 'float32', 'int32'
]
if cfg.MASK_ON:
in_shapes.append([-1, 2])
lod_levels.append(3)
dtypes.append('float32')
self.py_reader = fluid.layers.py_reader( self.py_reader = fluid.layers.py_reader(
capacity=64, capacity=64,
shapes=[[-1] + image_shape, [-1, 4], [-1, 1], [-1, 1], [-1, 3], shapes=in_shapes,
[-1, 1]], lod_levels=lod_levels,
lod_levels=[0, 1, 1, 1, 0, 0], dtypes=dtypes,
dtypes=[
"float32", "float32", "int32", "int32", "float32", "int32"
],
use_double_buffer=True) use_double_buffer=True)
self.image, self.gt_box, self.gt_label, self.is_crowd, \ ins = fluid.layers.read_file(self.py_reader)
self.im_info, self.im_id = fluid.layers.read_file(self.py_reader) self.image = ins[0]
self.gt_box = ins[1]
self.gt_label = ins[2]
self.is_crowd = ins[3]
self.im_info = ins[4]
self.im_id = ins[5]
if cfg.MASK_ON:
self.gt_masks = ins[6]
else: else:
self.image = fluid.layers.data( self.image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32') name='image', shape=image_shape, dtype='float32')
...@@ -74,24 +105,57 @@ class FasterRCNN(object): ...@@ -74,24 +105,57 @@ class FasterRCNN(object):
self.gt_label = fluid.layers.data( self.gt_label = fluid.layers.data(
name='gt_label', shape=[1], dtype='int32', lod_level=1) name='gt_label', shape=[1], dtype='int32', lod_level=1)
self.is_crowd = fluid.layers.data( self.is_crowd = fluid.layers.data(
name='is_crowd', name='is_crowd', shape=[1], dtype='int32', lod_level=1)
shape=[-1],
dtype='int32',
lod_level=1,
append_batch_size=False)
self.im_info = fluid.layers.data( self.im_info = fluid.layers.data(
name='im_info', shape=[3], dtype='float32') name='im_info', shape=[3], dtype='float32')
self.im_id = fluid.layers.data( self.im_id = fluid.layers.data(
name='im_id', shape=[1], dtype='int32') name='im_id', shape=[1], dtype='int32')
if cfg.MASK_ON:
self.gt_masks = fluid.layers.data(
name='gt_masks', shape=[2], dtype='float32', lod_level=3)
def feeds(self): def feeds(self):
if not self.is_train: if self.mode == 'infer':
return [self.image, self.im_info]
if self.mode == 'val':
return [self.image, self.im_info, self.im_id] return [self.image, self.im_info, self.im_id]
if not cfg.MASK_ON:
return [
self.image, self.gt_box, self.gt_label, self.is_crowd,
self.im_info, self.im_id
]
return [ return [
self.image, self.gt_box, self.gt_label, self.is_crowd, self.im_info, self.image, self.gt_box, self.gt_label, self.is_crowd, self.im_info,
self.im_id self.im_id, self.gt_masks
] ]
def eval_bbox(self):
self.im_scale = fluid.layers.slice(
self.im_info, [1], starts=[2], ends=[3])
im_scale_lod = fluid.layers.sequence_expand(self.im_scale,
self.rpn_rois)
boxes = self.rpn_rois / im_scale_lod
cls_prob = fluid.layers.softmax(self.cls_score, use_cudnn=False)
bbox_pred_reshape = fluid.layers.reshape(self.bbox_pred,
(-1, cfg.class_num, 4))
decoded_box = fluid.layers.box_coder(
prior_box=boxes,
prior_box_var=cfg.bbox_reg_weights,
target_box=bbox_pred_reshape,
code_type='decode_center_size',
box_normalized=False,
axis=1)
cliped_box = fluid.layers.box_clip(
input=decoded_box, im_info=self.im_info)
self.pred_result = fluid.layers.multiclass_nms(
bboxes=cliped_box,
scores=cls_prob,
score_threshold=cfg.TEST.score_thresh,
nms_top_k=-1,
nms_threshold=cfg.TEST.nms_thresh,
keep_top_k=cfg.TEST.detections_per_im,
normalized=False)
def rpn_heads(self, rpn_input): def rpn_heads(self, rpn_input):
# RPN hidden representation # RPN hidden representation
dim_out = rpn_input.shape[1] dim_out = rpn_input.shape[1]
...@@ -151,13 +215,13 @@ class FasterRCNN(object): ...@@ -151,13 +215,13 @@ class FasterRCNN(object):
rpn_cls_score_prob = fluid.layers.sigmoid( rpn_cls_score_prob = fluid.layers.sigmoid(
self.rpn_cls_score, name='rpn_cls_score_prob') self.rpn_cls_score, name='rpn_cls_score_prob')
param_obj = cfg.TRAIN if self.is_train else cfg.TEST param_obj = cfg.TRAIN if self.mode == 'train' else cfg.TEST
pre_nms_top_n = param_obj.rpn_pre_nms_top_n pre_nms_top_n = param_obj.rpn_pre_nms_top_n
post_nms_top_n = param_obj.rpn_post_nms_top_n post_nms_top_n = param_obj.rpn_post_nms_top_n
nms_thresh = param_obj.rpn_nms_thresh nms_thresh = param_obj.rpn_nms_thresh
min_size = param_obj.rpn_min_size min_size = param_obj.rpn_min_size
eta = param_obj.rpn_eta eta = param_obj.rpn_eta
rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals( self.rpn_rois, self.rpn_roi_probs = fluid.layers.generate_proposals(
scores=rpn_cls_score_prob, scores=rpn_cls_score_prob,
bbox_deltas=self.rpn_bbox_pred, bbox_deltas=self.rpn_bbox_pred,
im_info=self.im_info, im_info=self.im_info,
...@@ -168,10 +232,9 @@ class FasterRCNN(object): ...@@ -168,10 +232,9 @@ class FasterRCNN(object):
nms_thresh=nms_thresh, nms_thresh=nms_thresh,
min_size=min_size, min_size=min_size,
eta=eta) eta=eta)
self.rpn_rois = rpn_rois if self.mode == 'train':
if self.is_train:
outs = fluid.layers.generate_proposal_labels( outs = fluid.layers.generate_proposal_labels(
rpn_rois=rpn_rois, rpn_rois=self.rpn_rois,
gt_classes=self.gt_label, gt_classes=self.gt_label,
is_crowd=self.is_crowd, is_crowd=self.is_crowd,
gt_boxes=self.gt_box, gt_boxes=self.gt_box,
...@@ -191,27 +254,28 @@ class FasterRCNN(object): ...@@ -191,27 +254,28 @@ class FasterRCNN(object):
self.bbox_inside_weights = outs[3] self.bbox_inside_weights = outs[3]
self.bbox_outside_weights = outs[4] self.bbox_outside_weights = outs[4]
if cfg.MASK_ON:
mask_out = fluid.layers.generate_mask_labels(
im_info=self.im_info,
gt_classes=self.gt_label,
is_crowd=self.is_crowd,
gt_segms=self.gt_masks,
rois=self.rois,
labels_int32=self.labels_int32,
num_classes=cfg.class_num,
resolution=cfg.resolution)
self.mask_rois = mask_out[0]
self.roi_has_mask_int32 = mask_out[1]
self.mask_int32 = mask_out[2]
def fast_rcnn_heads(self, roi_input): def fast_rcnn_heads(self, roi_input):
if self.is_train: if self.mode == 'train':
pool_rois = self.rois pool_rois = self.rois
else: else:
pool_rois = self.rpn_rois pool_rois = self.rpn_rois
if cfg.roi_func == 'RoIPool': self.res5_2_sum = self.add_roi_box_head_func(roi_input, pool_rois)
pool = fluid.layers.roi_pool( rcnn_out = fluid.layers.pool2d(
input=roi_input, self.res5_2_sum, pool_type='avg', pool_size=7, name='res5_pool')
rois=pool_rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale)
elif cfg.roi_func == 'RoIAlign':
pool = fluid.layers.roi_align(
input=roi_input,
rois=pool_rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale,
sampling_ratio=cfg.sampling_ratio)
rcnn_out = self.add_roi_box_head_func(pool)
self.cls_score = fluid.layers.fc(input=rcnn_out, self.cls_score = fluid.layers.fc(input=rcnn_out,
size=cfg.class_num, size=cfg.class_num,
act=None, act=None,
...@@ -237,15 +301,87 @@ class FasterRCNN(object): ...@@ -237,15 +301,87 @@ class FasterRCNN(object):
learning_rate=2., learning_rate=2.,
regularizer=L2Decay(0.))) regularizer=L2Decay(0.)))
def SuffixNet(self, conv5):
mask_out = fluid.layers.conv2d_transpose(
input=conv5,
num_filters=cfg.dim_reduced,
filter_size=2,
stride=2,
act='relu',
param_attr=ParamAttr(
name='conv5_mask_w', initializer=MSRA(uniform=False)),
bias_attr=ParamAttr(
name='conv5_mask_b', learning_rate=2., regularizer=L2Decay(0.)))
act_func = None
if self.mode != 'train':
act_func = 'sigmoid'
mask_fcn_logits = fluid.layers.conv2d(
input=mask_out,
num_filters=cfg.class_num,
filter_size=1,
act=act_func,
param_attr=ParamAttr(
name='mask_fcn_logits_w', initializer=MSRA(uniform=False)),
bias_attr=ParamAttr(
name="mask_fcn_logits_b",
learning_rate=2.,
regularizer=L2Decay(0.)))
if self.mode != 'train':
mask_fcn_logits = fluid.layers.lod_reset(mask_fcn_logits,
self.pred_result)
return mask_fcn_logits
def mask_rcnn_heads(self, mask_input):
if self.mode == 'train':
conv5 = fluid.layers.gather(self.res5_2_sum,
self.roi_has_mask_int32)
self.mask_fcn_logits = self.SuffixNet(conv5)
else:
self.eval_bbox()
pred_res_shape = fluid.layers.shape(self.pred_result)
shape = fluid.layers.reduce_prod(pred_res_shape)
shape = fluid.layers.reshape(shape, [1, 1])
ones = fluid.layers.fill_constant([1, 1], value=1, dtype='int32')
cond = fluid.layers.equal(x=shape, y=ones)
ie = fluid.layers.IfElse(cond)
with ie.true_block():
pred_res_null = ie.input(self.pred_result)
ie.output(pred_res_null)
with ie.false_block():
pred_res = ie.input(self.pred_result)
pred_boxes = fluid.layers.slice(
pred_res, [1], starts=[2], ends=[6])
im_scale_lod = fluid.layers.sequence_expand(self.im_scale,
pred_boxes)
mask_rois = pred_boxes * im_scale_lod
conv5 = self.add_roi_box_head_func(mask_input, mask_rois)
mask_fcn = self.SuffixNet(conv5)
ie.output(mask_fcn)
self.mask_fcn_logits = ie()[0]
def mask_rcnn_loss(self):
mask_label = fluid.layers.cast(x=self.mask_int32, dtype='float32')
reshape_dim = cfg.class_num * cfg.resolution * cfg.resolution
mask_fcn_logits_reshape = fluid.layers.reshape(self.mask_fcn_logits,
(-1, reshape_dim))
loss_mask = fluid.layers.sigmoid_cross_entropy_with_logits(
x=mask_fcn_logits_reshape,
label=mask_label,
ignore_index=-1,
normalize=True)
loss_mask = fluid.layers.reduce_sum(loss_mask, name='loss_mask')
return loss_mask
def fast_rcnn_loss(self): def fast_rcnn_loss(self):
labels_int64 = fluid.layers.cast(x=self.labels_int32, dtype='int64') labels_int64 = fluid.layers.cast(x=self.labels_int32, dtype='int64')
labels_int64.stop_gradient = True labels_int64.stop_gradient = True
#loss_cls = fluid.layers.softmax_with_cross_entropy( loss_cls = fluid.layers.softmax_with_cross_entropy(
# logits=cls_score, logits=self.cls_score,
# label=labels_int64 label=labels_int64,
# ) numeric_stable_mode=True, )
cls_prob = fluid.layers.softmax(self.cls_score, use_cudnn=False)
loss_cls = fluid.layers.cross_entropy(cls_prob, labels_int64)
loss_cls = fluid.layers.reduce_mean(loss_cls) loss_cls = fluid.layers.reduce_mean(loss_cls)
loss_bbox = fluid.layers.smooth_l1( loss_bbox = fluid.layers.smooth_l1(
x=self.bbox_pred, x=self.bbox_pred,
...@@ -303,5 +439,4 @@ class FasterRCNN(object): ...@@ -303,5 +439,4 @@ class FasterRCNN(object):
norm = fluid.layers.reduce_prod(score_shape) norm = fluid.layers.reduce_prod(score_shape)
norm.stop_gradient = True norm.stop_gradient = True
rpn_reg_loss = rpn_reg_loss / norm rpn_reg_loss = rpn_reg_loss / norm
return rpn_cls_loss, rpn_reg_loss return rpn_cls_loss, rpn_reg_loss
...@@ -160,8 +160,22 @@ def add_ResNet50_conv4_body(body_input): ...@@ -160,8 +160,22 @@ def add_ResNet50_conv4_body(body_input):
return res4 return res4
def add_ResNet_roi_conv5_head(head_input): def add_ResNet_roi_conv5_head(head_input, rois):
res5 = layer_warp(bottleneck, head_input, 512, 3, 2, name="res5") if cfg.roi_func == 'RoIPool':
res5_pool = fluid.layers.pool2d( pool = fluid.layers.roi_pool(
res5, pool_type='avg', pool_size=7, name='res5_pool') input=head_input,
return res5_pool rois=rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale)
elif cfg.roi_func == 'RoIAlign':
pool = fluid.layers.roi_align(
input=head_input,
rois=rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale,
sampling_ratio=cfg.sampling_ratio)
res5 = layer_warp(bottleneck, pool, 512, 3, 2, name="res5")
return res5
...@@ -37,18 +37,15 @@ def train(): ...@@ -37,18 +37,15 @@ def train():
devices = os.getenv("CUDA_VISIBLE_DEVICES") or "" devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(",")) devices_num = len(devices.split(","))
total_batch_size = devices_num * cfg.TRAIN.im_per_batch total_batch_size = devices_num * cfg.TRAIN.im_per_batch
model = model_builder.FasterRCNN( model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body, add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head, add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=cfg.use_pyreader, use_pyreader=cfg.use_pyreader,
use_random=False) use_random=False)
model.build_model(image_shape) model.build_model(image_shape)
loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss = model.loss() losses, keys = model.loss()
loss_cls.persistable = True loss = losses[0]
loss_bbox.persistable = True fetch_list = [loss]
rpn_cls_loss.persistable = True
rpn_reg_loss.persistable = True
loss = loss_cls + loss_bbox + rpn_cls_loss + rpn_reg_loss
boundaries = cfg.lr_steps boundaries = cfg.lr_steps
gamma = cfg.lr_gamma gamma = cfg.lr_gamma
...@@ -95,8 +92,6 @@ def train(): ...@@ -95,8 +92,6 @@ def train():
train_reader = reader.train(batch_size=total_batch_size, shuffle=False) train_reader = reader.train(batch_size=total_batch_size, shuffle=False)
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
fetch_list = [loss, loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss]
def run(iterations): def run(iterations):
reader_time = [] reader_time = []
run_time = [] run_time = []
...@@ -109,20 +104,16 @@ def train(): ...@@ -109,20 +104,16 @@ def train():
reader_time.append(end_time - start_time) reader_time.append(end_time - start_time)
start_time = time.time() start_time = time.time()
if cfg.parallel: if cfg.parallel:
losses = train_exe.run(fetch_list=[v.name for v in fetch_list], outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data)) feed=feeder.feed(data))
else: else:
losses = exe.run(fluid.default_main_program(), outs = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list], fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data)) feed=feeder.feed(data))
end_time = time.time() end_time = time.time()
run_time.append(end_time - start_time) run_time.append(end_time - start_time)
total_images += len(data) total_images += len(data)
print("Batch {:d}, loss {:.6f} ".format(batch_id, np.mean(outs[0])))
lr = np.array(fluid.global_scope().find_var('learning_rate')
.get_tensor())
print("Batch {:d}, lr {:.6f}, loss {:.6f} ".format(batch_id, lr[0],
losses[0][0]))
return reader_time, run_time, total_images return reader_time, run_time, total_images
def run_pyreader(iterations): def run_pyreader(iterations):
...@@ -135,18 +126,16 @@ def train(): ...@@ -135,18 +126,16 @@ def train():
for batch_id in range(iterations): for batch_id in range(iterations):
start_time = time.time() start_time = time.time()
if cfg.parallel: if cfg.parallel:
losses = train_exe.run( outs = train_exe.run(
fetch_list=[v.name for v in fetch_list]) fetch_list=[v.name for v in fetch_list])
else: else:
losses = exe.run(fluid.default_main_program(), outs = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list]) fetch_list=[v.name for v in fetch_list])
end_time = time.time() end_time = time.time()
run_time.append(end_time - start_time) run_time.append(end_time - start_time)
total_images += devices_num total_images += devices_num
lr = np.array(fluid.global_scope().find_var('learning_rate') print("Batch {:d}, loss {:.6f} ".format(batch_id,
.get_tensor()) np.mean(outs[0])))
print("Batch {:d}, lr {:.6f}, loss {:.6f} ".format(batch_id, lr[
0], losses[0][0]))
except fluid.core.EOFException: except fluid.core.EOFException:
py_reader.reset() py_reader.reset()
......
...@@ -36,24 +36,39 @@ import matplotlib ...@@ -36,24 +36,39 @@ import matplotlib
matplotlib.use('Agg') matplotlib.use('Agg')
from pycocotools.coco import COCO from pycocotools.coco import COCO
import box_utils import box_utils
import segm_utils
from config import cfg from config import cfg
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class DatasetPath(object):
def __init__(self, mode):
self.mode = mode
mode_name = 'train' if mode == 'train' else 'val'
if cfg.dataset != 'coco2014' and cfg.dataset != 'coco2017':
raise NotImplementedError('Dataset {} not supported'.format(
cfg.dataset))
self.sub_name = mode_name + cfg.dataset[-4:]
def get_data_dir(self):
return os.path.join(cfg.data_dir, self.sub_name)
def get_file_list(self):
sfile_list = 'annotations/instances_' + self.sub_name + '.json'
return os.path.join(cfg.data_dir, sfile_list)
class JsonDataset(object): class JsonDataset(object):
"""A class representing a COCO json dataset.""" """A class representing a COCO json dataset."""
def __init__(self, train=False): def __init__(self, mode):
print('Creating: {}'.format(cfg.dataset)) print('Creating: {}'.format(cfg.dataset))
self.name = cfg.dataset self.name = cfg.dataset
self.is_train = train self.is_train = mode == 'train'
if self.is_train: data_path = DatasetPath(mode)
data_dir = cfg.train_data_dir data_dir = data_path.get_data_dir()
file_list = cfg.train_file_list file_list = data_path.get_file_list()
else:
data_dir = cfg.val_data_dir
file_list = cfg.val_file_list
self.image_directory = data_dir self.image_directory = data_dir
self.COCO = COCO(file_list) self.COCO = COCO(file_list)
# Set up dataset classes # Set up dataset classes
...@@ -91,8 +106,9 @@ class JsonDataset(object): ...@@ -91,8 +106,9 @@ class JsonDataset(object):
end_time = time.time() end_time = time.time()
print('_add_gt_annotations took {:.3f}s'.format(end_time - print('_add_gt_annotations took {:.3f}s'.format(end_time -
start_time)) start_time))
print('Appending horizontally-flipped training examples...') if cfg.TRAIN.use_flipped:
self._extend_with_flipped_entries(roidb) print('Appending horizontally-flipped training examples...')
self._extend_with_flipped_entries(roidb)
print('Loaded dataset: {:s}'.format(self.name)) print('Loaded dataset: {:s}'.format(self.name))
print('{:d} roidb entries'.format(len(roidb))) print('{:d} roidb entries'.format(len(roidb)))
if self.is_train: if self.is_train:
...@@ -111,6 +127,7 @@ class JsonDataset(object): ...@@ -111,6 +127,7 @@ class JsonDataset(object):
entry['gt_classes'] = np.empty((0), dtype=np.int32) entry['gt_classes'] = np.empty((0), dtype=np.int32)
entry['gt_id'] = np.empty((0), dtype=np.int32) entry['gt_id'] = np.empty((0), dtype=np.int32)
entry['is_crowd'] = np.empty((0), dtype=np.bool) entry['is_crowd'] = np.empty((0), dtype=np.bool)
entry['segms'] = []
# Remove unwanted fields that come from the json file (if they exist) # Remove unwanted fields that come from the json file (if they exist)
for k in ['date_captured', 'url', 'license', 'file_name']: for k in ['date_captured', 'url', 'license', 'file_name']:
if k in entry: if k in entry:
...@@ -126,9 +143,15 @@ class JsonDataset(object): ...@@ -126,9 +143,15 @@ class JsonDataset(object):
objs = self.COCO.loadAnns(ann_ids) objs = self.COCO.loadAnns(ann_ids)
# Sanitize bboxes -- some are invalid # Sanitize bboxes -- some are invalid
valid_objs = [] valid_objs = []
valid_segms = []
width = entry['width'] width = entry['width']
height = entry['height'] height = entry['height']
for obj in objs: for obj in objs:
if isinstance(obj['segmentation'], list):
# Valid polygons have >= 3 points, so require >= 6 coordinates
obj['segmentation'] = [
p for p in obj['segmentation'] if len(p) >= 6
]
if obj['area'] < cfg.TRAIN.gt_min_area: if obj['area'] < cfg.TRAIN.gt_min_area:
continue continue
if 'ignore' in obj and obj['ignore'] == 1: if 'ignore' in obj and obj['ignore'] == 1:
...@@ -141,6 +164,8 @@ class JsonDataset(object): ...@@ -141,6 +164,8 @@ class JsonDataset(object):
if obj['area'] > 0 and x2 > x1 and y2 > y1: if obj['area'] > 0 and x2 > x1 and y2 > y1:
obj['clean_bbox'] = [x1, y1, x2, y2] obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj) valid_objs.append(obj)
valid_segms.append(obj['segmentation'])
num_valid_objs = len(valid_objs) num_valid_objs = len(valid_objs)
gt_boxes = np.zeros((num_valid_objs, 4), dtype=entry['gt_boxes'].dtype) gt_boxes = np.zeros((num_valid_objs, 4), dtype=entry['gt_boxes'].dtype)
...@@ -158,6 +183,7 @@ class JsonDataset(object): ...@@ -158,6 +183,7 @@ class JsonDataset(object):
entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes) entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes)
entry['gt_id'] = np.append(entry['gt_id'], gt_id) entry['gt_id'] = np.append(entry['gt_id'], gt_id)
entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd) entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd)
entry['segms'].extend(valid_segms)
def _extend_with_flipped_entries(self, roidb): def _extend_with_flipped_entries(self, roidb):
"""Flip each entry in the given roidb and return a new roidb that is the """Flip each entry in the given roidb and return a new roidb that is the
...@@ -175,11 +201,13 @@ class JsonDataset(object): ...@@ -175,11 +201,13 @@ class JsonDataset(object):
gt_boxes[:, 2] = width - oldx1 - 1 gt_boxes[:, 2] = width - oldx1 - 1
assert (gt_boxes[:, 2] >= gt_boxes[:, 0]).all() assert (gt_boxes[:, 2] >= gt_boxes[:, 0]).all()
flipped_entry = {} flipped_entry = {}
dont_copy = ('gt_boxes', 'flipped') dont_copy = ('gt_boxes', 'flipped', 'segms')
for k, v in entry.items(): for k, v in entry.items():
if k not in dont_copy: if k not in dont_copy:
flipped_entry[k] = v flipped_entry[k] = v
flipped_entry['gt_boxes'] = gt_boxes flipped_entry['gt_boxes'] = gt_boxes
flipped_entry['segms'] = segm_utils.flip_segms(
entry['segms'], entry['height'], entry['width'])
flipped_entry['flipped'] = True flipped_entry['flipped'] = True
flipped_roidb.append(flipped_entry) flipped_roidb.append(flipped_entry)
roidb.extend(flipped_roidb) roidb.extend(flipped_roidb)
......
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0
model=$1 # faster_rcnn, mask_rcnn
if [ "$model" = "faster_rcnn" ]; then
mask_on="--MASK_ON False"
elif [ "$model" = "mask_rcnn" ]; then
mask_on="--MASK_ON True"
else
echo "Invalid model provided. Please use one of {faster_rcnn, mask_rcnn}"
exit 1
fi
python -u ../eval_coco_map.py \
$mask_on \
--pretrained_model=../output/model_iter179999 \
--data_dir=../dataset/coco/ \
此差异已折叠。
此差异已折叠。
此差异已折叠。
checkpoints
output*
*.pyc
*.swp
*_result
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
from .metrics_util import get_metrics
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册