Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
65e8a7e8
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
65e8a7e8
编写于
11月 30, 2017
作者:
W
wangmeng28
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
restructure the code of ltr
上级
82611c75
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
289 addition
and
349 deletion
+289
-349
ltr/README.md
ltr/README.md
+4
-8
ltr/infer.py
ltr/infer.py
+115
-0
ltr/lambda_rank.py
ltr/lambda_rank.py
+11
-146
ltr/metrics.py
ltr/metrics.py
+0
-38
ltr/ranknet.py
ltr/ranknet.py
+4
-157
ltr/train.py
ltr/train.py
+155
-0
未找到文件。
ltr/README.md
浏览文件 @
65e8a7e8
...
...
@@ -96,7 +96,7 @@ $$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}} = \frac{1}{2}(1-S_{i,j})-\fra
训练
`RankNet`
模型在命令行执行:
```
bash
python
ranknet.py
python
train.py
--model_type
ranknet
```
初次执行会自动下载数据,训练RankNet模型,并将每个轮次的模型参数存储下来。
...
...
@@ -104,9 +104,7 @@ python ranknet.py
使用训练好的
`RankNet`
模型继续进行预测,在命令行执行:
```
bash
python ranknet.py
\
--run_type
infer
\
--test_model_path
models/ranknet_params_0.tar.gz
python infer.py
--model_type
ranknet
--test_model_path
models/ranknet_params_0.tar.gz
```
本例提供了rankNet模型的训练和预测两个部分。完成训练后的模型分为拓扑结构(需要注意
`rank_cost`
不是模型拓扑结构的一部分)和模型参数文件两部分。在本例子中复用了
`ranknet`
训练时的模型拓扑结构
`half_ranknet`
,模型参数从外存中加载。模型预测的输入为单个文档的特征向量,模型会给出相关性得分。将预测得分排序即可得到最终的文档相关性排序结果。
...
...
@@ -193,7 +191,7 @@ $$\lambda _{i,j}=\frac{\partial C}{\partial s_{i}}=-\frac{\sigma }{1+e^{\sigma (
训练
`LambdaRank`
模型在命令行执行:
```
bash
python
lambda_rank.py
python
train.py
--model_type
lambdarank
```
初次运行脚本会自动下载数据训练LambdaRank模型,并将每个轮次的模型存储下来。
...
...
@@ -203,9 +201,7 @@ LambdaRank模型预测过程和RankNet相同。预测时的模型拓扑结构复
使用训练好的
`LambdaRank`
模型继续进行预测,在命令行执行:
```
bash
python lambda_rank.py
\
--run_type
infer
\
--test_model_path
models/lambda_rank_params_0.tar.gz
python infer.py
--model_type
lambdarank
--test_model_path
models/lambda_rank_params_0.tar.gz
```
## 自定义 LambdaRank数据
...
...
ltr/infer.py
0 → 100644
浏览文件 @
65e8a7e8
import
os
import
gzip
import
functools
import
argparse
import
paddle.v2
as
paddle
from
ranknet
import
half_ranknet
from
lambda_rank
import
lambda_rank
def
ranknet_infer
(
input_dim
,
model_path
):
"""
RankNet model inference interface.
"""
# we just need half_ranknet to predict a rank score,
# which can be used in sort documents
output
=
half_ranknet
(
"right"
,
input_dim
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_path
))
# load data of same query and relevance documents,
# need ranknet to rank these candidates
infer_query_id
=
[]
infer_data
=
[]
infer_doc_index
=
[]
# convert to mq2007 built-in data format
# <query_id> <relevance_score> <feature_vector>
plain_txt_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"plain_txt"
)
for
query_id
,
relevance_score
,
feature_vector
in
plain_txt_test
():
infer_query_id
.
append
(
query_id
)
infer_data
.
append
([
feature_vector
])
# predict score of infer_data document.
# Re-sort the document base on predict score
# in descending order. then we build the ranking documents
scores
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
for
query_id
,
score
in
zip
(
infer_query_id
,
scores
):
print
"query_id : "
,
query_id
,
" score : "
,
score
def
lambda_rank_infer
(
input_dim
,
model_path
):
"""
LambdaRank model inference interface.
"""
output
=
lambda_rank
(
input_dim
,
is_infer
=
True
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_path
))
infer_query_id
=
None
infer_data
=
[]
infer_data_num
=
1
fill_default_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"listwise"
)
for
label
,
querylist
in
fill_default_test
():
infer_data
.
append
([
querylist
])
if
len
(
infer_data
)
==
infer_data_num
:
break
# Predict score of infer_data document.
# Re-sort the document base on predict score.
# In descending order. then we build the ranking documents.
predicitons
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
for
i
,
score
in
enumerate
(
predicitons
):
print
i
,
score
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
"PaddlePaddle learning to rank example."
)
parser
.
add_argument
(
"--model_type"
,
type
=
str
,
help
=
(
"A flag indicating to run the RankNet or the LambdaRank model. "
"Available options are: ranknet or lambdarank."
),
default
=
"ranknet"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
help
=
"A flag indicating whether to use the GPU device in training."
,
default
=
False
)
parser
.
add_argument
(
"--trainer_count"
,
type
=
int
,
help
=
"The thread number used in training."
,
default
=
1
)
parser
.
add_argument
(
"--test_model_path"
,
type
=
str
,
required
=
True
,
help
=
(
"The path of a trained model."
))
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
assert
os
.
path
.
exists
(
args
.
test_model_path
),
(
"The trained model does not exit. Please set a correct path."
)
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
args
.
trainer_count
)
# Training dataset: mq2007, input_dim = 46, dense format.
input_dim
=
46
if
args
.
model_type
==
"ranknet"
:
ranknet_infer
(
input_dim
,
args
.
test_model_path
)
elif
args
.
model_type
==
"lambdarank"
:
lambda_rank_infer
(
input_dim
,
args
.
test_model_path
)
else
:
logger
.
fatal
((
"A wrong value for parameter model type. "
"Available options are: ranknet or lambdarank."
))
ltr/lambda_rank.py
浏览文件 @
65e8a7e8
import
os
import
sys
import
gzip
import
functools
import
argparse
import
logging
import
numpy
as
np
"""
LambdaRank is a listwise rank model.
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
"""
import
paddle.v2
as
paddle
logger
=
logging
.
getLogger
(
"paddle"
)
logger
.
setLevel
(
logging
.
INFO
)
def
lambda_rank
(
input_dim
,
is_infer
):
def
lambda_rank
(
input_dim
,
is_infer
=
False
):
"""
LambdaRank is a listwise rank model, the input data and label
must be sequences.
The input data and label for LambdaRank must be sequences.
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
parameters :
input_dim, one document's dense feature vector dimension
The format of the dense_vector_sequence is as follows:
[[f, ...], [f, ...], ...], f is a float or an int number
"""
if
not
is_infer
:
label
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
dense_vector_sequence
(
1
))
data
=
paddle
.
layer
.
data
(
"data"
,
paddle
.
data_type
.
dense_vector_sequence
(
input_dim
))
...
...
@@ -49,134 +37,11 @@ def lambda_rank(input_dim, is_infer):
param_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.01
))
if
not
is_infer
:
# Define the cost layer.
label
=
paddle
.
layer
.
data
(
"label"
,
paddle
.
data_type
.
dense_vector_sequence
(
1
))
cost
=
paddle
.
layer
.
lambda_cost
(
input
=
output
,
score
=
label
,
NDCG_num
=
6
,
max_sort_size
=-
1
)
return
cost
,
output
return
output
def
lambda_rank_train
(
num_passes
,
model_save_dir
):
# The input for LambdaRank must be a sequence.
fill_default_train
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
train
,
format
=
"listwise"
)
fill_default_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"listwise"
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
fill_default_train
,
buf_size
=
100
),
batch_size
=
32
)
test_reader
=
paddle
.
batch
(
fill_default_test
,
batch_size
=
32
)
# Training dataset: mq2007, input_dim = 46, dense format.
input_dim
=
46
cost
,
output
=
lambda_rank
(
input_dim
,
is_infer
=
False
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
))
# Define end batch and end pass event handler.
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
logger
.
info
(
"Pass %d Batch %d Cost %.9f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
))
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
logger
.
info
(
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
))
with
gzip
.
open
(
os
.
path
.
join
(
model_save_dir
,
"lambda_rank_params_%d.tar.gz"
%
(
event
.
pass_id
)),
"w"
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
feeding
=
{
"label"
:
0
,
"data"
:
1
}
trainer
.
train
(
reader
=
train_reader
,
event_handler
=
event_handler
,
feeding
=
feeding
,
num_passes
=
num_passes
)
def
lambda_rank_infer
(
test_model_path
):
"""LambdaRank model inference interface.
Parameters:
test_model_path : The path of the trained model.
"""
logger
.
info
(
"Begin to Infer..."
)
input_dim
=
46
output
=
lambda_rank
(
input_dim
,
is_infer
=
True
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
test_model_path
))
infer_query_id
=
None
infer_data
=
[]
infer_data_num
=
1
fill_default_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"listwise"
)
for
label
,
querylist
in
fill_default_test
():
infer_data
.
append
([
querylist
])
if
len
(
infer_data
)
==
infer_data_num
:
break
# Predict score of infer_data document.
# Re-sort the document base on predict score.
# In descending order. then we build the ranking documents.
predicitons
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
for
i
,
score
in
enumerate
(
predicitons
):
print
i
,
score
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
"PaddlePaddle LambdaRank example."
)
parser
.
add_argument
(
"--run_type"
,
type
=
str
,
help
=
(
"A flag indicating to run the training or the inferring task. "
"Available options are: train or infer."
),
default
=
"train"
)
parser
.
add_argument
(
"--num_passes"
,
type
=
int
,
help
=
"The number of passes to train the model."
,
default
=
10
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
help
=
"A flag indicating whether to use the GPU device in training."
,
default
=
False
)
parser
.
add_argument
(
"--trainer_count"
,
type
=
int
,
help
=
"The thread number used in training."
,
default
=
1
)
parser
.
add_argument
(
"--model_save_dir"
,
type
=
str
,
required
=
False
,
help
=
(
"The path to save the trained models."
),
default
=
"models"
)
parser
.
add_argument
(
"--test_model_path"
,
type
=
str
,
required
=
False
,
help
=
(
"This parameter works only in inferring task to "
"specify path of a trained model."
),
default
=
""
)
args
=
parser
.
parse_args
()
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
args
.
trainer_count
)
if
args
.
run_type
==
"train"
:
lambda_rank_train
(
args
.
num_passes
,
args
.
model_save_dir
)
elif
args
.
run_type
==
"infer"
:
assert
os
.
path
.
exists
(
args
.
test_model_path
),
(
"The trained model does not exit. Please set a correct path."
)
lambda_rank_infer
(
args
.
test_model_path
)
return
cost
else
:
logger
.
fatal
((
"A wrong value for parameter run type. "
"Available options are: train or infer."
))
return
output
ltr/metrics.py
已删除
100644 → 0
浏览文件 @
82611c75
import
numpy
as
np
import
unittest
def
ndcg
(
score_list
):
"""
measure the ndcg score of order list
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
parameter:
score_list: np.array, shape=(sample_num,1)
e.g. predict rank score list :
>>> scores = [3, 2, 3, 0, 1, 2]
>>> ndcg_score = ndcg(scores)
"""
def
dcg
(
score_list
):
n
=
len
(
score_list
)
cost
=
.
0
for
i
in
range
(
n
):
cost
+=
float
(
np
.
power
(
2
,
score_list
[
i
]))
/
np
.
log
((
i
+
1
)
+
1
)
return
cost
dcg_cost
=
dcg
(
score_list
)
score_ranking
=
sorted
(
score_list
,
reverse
=
True
)
ideal_cost
=
dcg
(
score_ranking
)
return
dcg_cost
/
ideal_cost
class
TestNDCG
(
unittest
.
TestCase
):
def
test_array
(
self
):
a
=
[
3
,
2
,
3
,
0
,
1
,
2
]
value
=
ndcg
(
a
)
self
.
assertAlmostEqual
(
0.9583
,
value
,
places
=
3
)
if
__name__
==
'__main__'
:
unittest
.
main
()
ltr/ranknet.py
浏览文件 @
65e8a7e8
import
os
import
sys
import
gzip
import
functools
import
argparse
import
logging
import
numpy
as
np
"""
ranknet is the classic pairwise learning to rank algorithm
http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
"""
import
paddle.v2
as
paddle
logger
=
logging
.
getLogger
(
"paddle"
)
logger
.
setLevel
(
logging
.
INFO
)
# ranknet is the classic pairwise learning to rank algorithm
# http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
def
score_diff
(
right_score
,
left_score
):
return
np
.
average
(
np
.
abs
(
right_score
-
left_score
))
def
half_ranknet
(
name_prefix
,
input_dim
):
"""
...
...
@@ -60,142 +46,3 @@ def ranknet(input_dim):
cost
=
paddle
.
layer
.
rank_cost
(
name
=
"cost"
,
left
=
output_left
,
right
=
output_right
,
label
=
label
)
return
cost
def
ranknet_train
(
num_passes
,
model_save_dir
):
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mq2007
.
train
,
buf_size
=
100
),
batch_size
=
100
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mq2007
.
test
,
batch_size
=
100
)
# mq2007 feature_dim = 46, dense format
# fc hidden_dim = 128
feature_dim
=
46
cost
=
ranknet
(
feature_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
2e-4
))
# Define the input data order
feeding
=
{
"label"
:
0
,
"left_data"
:
1
,
"right_data"
:
2
}
# Define end batch and end pass event handler
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
25
==
0
:
diff
=
score_diff
(
event
.
gm
.
getLayerOutputs
(
"left_score"
)[
"left_score"
][
"value"
],
event
.
gm
.
getLayerOutputs
(
"right_score"
)[
"right_score"
][
"value"
])
logger
.
info
((
"Pass %d Batch %d : Cost %.6f, "
"average absolute diff scores: %.6f"
)
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
diff
))
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
logger
.
info
(
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
))
with
gzip
.
open
(
os
.
path
.
join
(
model_save_dir
,
"ranknet_params_%d.tar.gz"
%
(
event
.
pass_id
)),
"w"
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
trainer
.
train
(
reader
=
train_reader
,
event_handler
=
event_handler
,
feeding
=
feeding
,
num_passes
=
num_passes
)
def
ranknet_infer
(
model_path
):
"""
load the trained model. And predict with plain txt input
"""
logger
.
info
(
"Begin to Infer..."
)
feature_dim
=
46
# we just need half_ranknet to predict a rank score,
# which can be used in sort documents
output
=
half_ranknet
(
"right"
,
feature_dim
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_path
))
# load data of same query and relevance documents,
# need ranknet to rank these candidates
infer_query_id
=
[]
infer_data
=
[]
infer_doc_index
=
[]
# convert to mq2007 built-in data format
# <query_id> <relevance_score> <feature_vector>
plain_txt_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"plain_txt"
)
for
query_id
,
relevance_score
,
feature_vector
in
plain_txt_test
():
infer_query_id
.
append
(
query_id
)
infer_data
.
append
([
feature_vector
])
# predict score of infer_data document.
# Re-sort the document base on predict score
# in descending order. then we build the ranking documents
scores
=
paddle
.
infer
(
output_layer
=
output
,
parameters
=
parameters
,
input
=
infer_data
)
for
query_id
,
score
in
zip
(
infer_query_id
,
scores
):
print
"query_id : "
,
query_id
,
" score : "
,
score
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
description
=
"PaddlePaddle RankNet example."
)
parser
.
add_argument
(
"--run_type"
,
type
=
str
,
help
=
(
"A flag indicating to run the training or the inferring task. "
"Available options are: train or infer."
),
default
=
"train"
)
parser
.
add_argument
(
"--num_passes"
,
type
=
int
,
help
=
"The number of passes to train the model."
,
default
=
10
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
help
=
"A flag indicating whether to use the GPU device in training."
,
default
=
False
)
parser
.
add_argument
(
"--trainer_count"
,
type
=
int
,
help
=
"The thread number used in training."
,
default
=
1
)
parser
.
add_argument
(
"--model_save_dir"
,
type
=
str
,
required
=
False
,
help
=
(
"The path to save the trained models."
),
default
=
"models"
)
parser
.
add_argument
(
"--test_model_path"
,
type
=
str
,
required
=
False
,
help
=
(
"This parameter works only in inferring task to "
"specify path of a trained model."
),
default
=
""
)
args
=
parser
.
parse_args
()
if
not
os
.
path
.
exists
(
args
.
model_save_dir
):
os
.
mkdir
(
args
.
model_save_dir
)
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
args
.
trainer_count
)
if
args
.
run_type
==
"train"
:
ranknet_train
(
args
.
num_passes
,
args
.
model_save_dir
)
elif
args
.
run_type
==
"infer"
:
assert
os
.
path
.
exists
(
args
.
test_model_path
),
"The trained model does not exit."
ranknet_infer
(
args
.
test_model_path
)
else
:
logger
.
fatal
((
"A wrong value for parameter run type. "
"Available options are: train or infer."
))
ltr/train.py
0 → 100644
浏览文件 @
65e8a7e8
import
os
import
gzip
import
functools
import
argparse
import
logging
import
numpy
as
np
import
paddle.v2
as
paddle
from
ranknet
import
ranknet
from
lambda_rank
import
lambda_rank
logger
=
logging
.
getLogger
(
"paddle"
)
logger
.
setLevel
(
logging
.
INFO
)
def
ranknet_train
(
input_dim
,
num_passes
,
model_save_dir
):
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mq2007
.
train
,
buf_size
=
100
),
batch_size
=
100
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mq2007
.
test
,
batch_size
=
100
)
cost
=
ranknet
(
input_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
2e-4
))
feeding
=
{
"label"
:
0
,
"left_data"
:
1
,
"right_data"
:
2
}
def
score_diff
(
right_score
,
left_score
):
return
np
.
average
(
np
.
abs
(
right_score
-
left_score
))
# Define end batch and end pass event handler
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
25
==
0
:
diff
=
score_diff
(
event
.
gm
.
getLayerOutputs
(
"left_score"
)[
"left_score"
][
"value"
],
event
.
gm
.
getLayerOutputs
(
"right_score"
)[
"right_score"
][
"value"
])
logger
.
info
((
"Pass %d Batch %d : Cost %.6f, "
"average absolute diff scores: %.6f"
)
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
diff
))
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
logger
.
info
(
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
))
with
gzip
.
open
(
os
.
path
.
join
(
model_save_dir
,
"ranknet_params_%d.tar.gz"
%
(
event
.
pass_id
)),
"w"
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
trainer
.
train
(
reader
=
train_reader
,
event_handler
=
event_handler
,
feeding
=
feeding
,
num_passes
=
num_passes
)
def
lambda_rank_train
(
input_dim
,
num_passes
,
model_save_dir
):
# The input for LambdaRank must be a sequence.
fill_default_train
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
train
,
format
=
"listwise"
)
fill_default_test
=
functools
.
partial
(
paddle
.
dataset
.
mq2007
.
test
,
format
=
"listwise"
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
fill_default_train
,
buf_size
=
100
),
batch_size
=
32
)
test_reader
=
paddle
.
batch
(
fill_default_test
,
batch_size
=
32
)
cost
=
lambda_rank
(
input_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
))
feeding
=
{
"label"
:
0
,
"data"
:
1
}
# Define end batch and end pass event handler.
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
logger
.
info
(
"Pass %d Batch %d Cost %.9f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
))
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
test_reader
,
feeding
=
feeding
)
logger
.
info
(
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
))
with
gzip
.
open
(
os
.
path
.
join
(
model_save_dir
,
"lambda_rank_params_%d.tar.gz"
%
(
event
.
pass_id
)),
"w"
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
trainer
.
train
(
reader
=
train_reader
,
event_handler
=
event_handler
,
feeding
=
feeding
,
num_passes
=
num_passes
)
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
"PaddlePaddle learning to rank example."
)
parser
.
add_argument
(
"--model_type"
,
type
=
str
,
help
=
(
"A flag indicating to run the RankNet or the LambdaRank model. "
"Available options are: ranknet or lambdarank."
),
default
=
"ranknet"
)
parser
.
add_argument
(
"--num_passes"
,
type
=
int
,
help
=
"The number of passes to train the model."
,
default
=
10
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
bool
,
help
=
"A flag indicating whether to use the GPU device in training."
,
default
=
False
)
parser
.
add_argument
(
"--trainer_count"
,
type
=
int
,
help
=
"The thread number used in training."
,
default
=
1
)
parser
.
add_argument
(
"--model_save_dir"
,
type
=
str
,
required
=
False
,
help
=
(
"The path to save the trained models."
),
default
=
"models"
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
if
not
os
.
path
.
exists
(
args
.
model_save_dir
):
os
.
mkdir
(
args
.
model_save_dir
)
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
args
.
trainer_count
)
# Training dataset: mq2007, input_dim = 46, dense format.
input_dim
=
46
if
args
.
model_type
==
"ranknet"
:
ranknet_train
(
input_dim
,
args
.
num_passes
,
args
.
model_save_dir
)
elif
args
.
model_type
==
"lambdarank"
:
lambda_rank_train
(
input_dim
,
args
.
num_passes
,
args
.
model_save_dir
)
else
:
logger
.
fatal
((
"A wrong value for parameter model type. "
"Available options are: ranknet or lambdarank."
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录