Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
6423cab6
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6423cab6
编写于
2月 17, 2020
作者:
C
chengjuntao
提交者:
GitHub
2月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update new api for rrpn (#4296)
update new api for rrpn
上级
042737db
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
93 addition
and
147 deletion
+93
-147
PaddleCV/rrpn/eval.py
PaddleCV/rrpn/eval.py
+6
-13
PaddleCV/rrpn/eval_helper.py
PaddleCV/rrpn/eval_helper.py
+8
-8
PaddleCV/rrpn/infer.py
PaddleCV/rrpn/infer.py
+7
-14
PaddleCV/rrpn/models/model_builder.py
PaddleCV/rrpn/models/model_builder.py
+64
-64
PaddleCV/rrpn/train.py
PaddleCV/rrpn/train.py
+8
-47
PaddleCV/rrpn/utility.py
PaddleCV/rrpn/utility.py
+0
-1
未找到文件。
PaddleCV/rrpn/eval.py
浏览文件 @
6423cab6
...
...
@@ -36,7 +36,6 @@ def eval():
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
image_shape
=
[
3
,
cfg
.
TEST
.
max_size
,
cfg
.
TEST
.
max_size
]
class_nums
=
cfg
.
class_num
model
=
model_builder
.
RRPN
(
add_conv_body_func
=
resnet
.
ResNet
(),
...
...
@@ -48,19 +47,14 @@ def eval():
infer_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
model
.
build_model
(
image_shape
)
model
.
build_model
()
pred_boxes
=
model
.
eval_bbox_out
()
infer_prog
=
infer_prog
.
clone
(
True
)
exe
.
run
(
startup_prog
)
# yapf: disable
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
cfg
.
pretrained_model
,
var
.
name
))
if
cfg
.
pretrained_model
:
checkpoint
.
load_params
(
exe
,
infer_prog
,
cfg
.
pretrained_model
)
# yapf: enable
fluid
.
load
(
infer_prog
,
cfg
.
pretrained_model
,
exe
)
test_reader
=
reader
.
test
(
1
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
data_loader
=
model
.
data_loader
data_loader
.
set_sample_list_generator
(
test_reader
,
places
=
place
)
fetch_list
=
[
pred_boxes
]
res_list
=
[]
...
...
@@ -68,11 +62,10 @@ def eval():
'bbox'
,
'gt_box'
,
'gt_class'
,
'is_crowed'
,
'im_info'
,
'im_id'
,
'is_difficult'
]
for
i
,
data
in
enumerate
(
test_reader
()):
im_info
=
[
data
[
0
][
1
]]
for
i
,
data
in
enumerate
(
data_loader
()):
result
=
exe
.
run
(
infer_prog
,
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
)
,
feed
=
data
,
return_numpy
=
False
)
pred_boxes_v
=
result
[
0
]
nmsed_out
=
pred_boxes_v
...
...
PaddleCV/rrpn/eval_helper.py
浏览文件 @
6423cab6
...
...
@@ -31,11 +31,11 @@ logger = logging.getLogger(__name__)
def
get_key_dict
(
out
,
data
,
key
):
res
=
{}
for
i
in
range
(
len
(
key
))
:
if
i
==
0
:
res
[
key
[
i
]]
=
out
for
name
in
key
:
if
name
==
'bbox'
:
res
[
name
]
=
np
.
array
(
out
)
else
:
res
[
key
[
i
]]
=
data
[
i
]
res
[
name
]
=
np
.
array
(
data
[
name
])
return
res
...
...
@@ -167,7 +167,7 @@ def calculate_ap(rec, prec):
def
icdar_map
(
result
,
class_name
,
ovthresh
):
im_ids
=
[]
for
res
in
result
:
im_ids
.
append
(
res
[
'im_id'
])
im_ids
.
append
(
res
[
'im_id'
]
[
0
][
0
]
)
recs
=
{}
for
i
,
im_id
in
enumerate
(
im_ids
):
...
...
@@ -185,11 +185,11 @@ def icdar_map(result, class_name, ovthresh):
confidence
=
[]
bbox
=
[]
for
res
in
result
:
im_info
=
res
[
'im_info'
]
im_info
=
res
[
'im_info'
]
[
0
]
pred_boxes
=
res
[
'bbox'
]
for
box
in
pred_boxes
:
if
box
[
0
]
==
class_name
:
image_ids
.
append
(
res
[
'im_id'
])
image_ids
.
append
(
res
[
'im_id'
]
[
0
][
0
]
)
confidence
.
append
(
box
[
1
])
clipd_box
=
clip_box
(
box
[
2
:].
reshape
(
-
1
,
8
),
im_info
)
bbox
.
append
(
clipd_box
[
0
])
...
...
@@ -286,7 +286,7 @@ def icdar_box_eval(result, thresh):
num_global_care_gt
=
0
num_global_care_det
=
0
for
res
in
result
:
im_info
=
res
[
'im_info'
]
im_info
=
res
[
'im_info'
]
[
0
]
h
=
im_info
[
1
]
w
=
im_info
[
2
]
gt_boxes
=
res
[
'gt_box'
]
...
...
PaddleCV/rrpn/infer.py
浏览文件 @
6423cab6
...
...
@@ -32,7 +32,6 @@ from utility import print_arguments, parse_args, check_gpu
def
infer
():
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
image_shape
=
[
3
,
cfg
.
TEST
.
max_size
,
cfg
.
TEST
.
max_size
]
class_nums
=
cfg
.
class_num
model
=
model_builder
.
RRPN
(
add_conv_body_func
=
resnet
.
ResNet
(),
...
...
@@ -43,31 +42,25 @@ def infer():
infer_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
infer_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
model
.
build_model
(
image_shape
)
model
.
build_model
()
pred_boxes
=
model
.
eval_bbox_out
()
infer_prog
=
infer_prog
.
clone
(
True
)
exe
.
run
(
startup_prog
)
# yapf: disable
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
cfg
.
pretrained_model
,
var
.
name
))
if
cfg
.
pretrained_model
:
checkpoint
.
load_params
(
exe
,
infer_prog
,
cfg
.
pretrained_model
)
# yapf: enable
fluid
.
load
(
infer_prog
,
cfg
.
pretrained_model
,
exe
)
infer_reader
=
reader
.
infer
(
cfg
.
image_path
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
data_loader
=
model
.
data_loader
data_loader
.
set_sample_list_generator
(
infer_reader
,
places
=
place
)
fetch_list
=
[
pred_boxes
]
imgs
=
os
.
listdir
(
cfg
.
image_path
)
imgs
.
sort
()
for
i
,
data
in
enumerate
(
infer_re
ader
()):
for
i
,
data
in
enumerate
(
data_lo
ader
()):
result
=
exe
.
run
(
infer_prog
,
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
)
,
feed
=
data
,
return_numpy
=
False
)
nmsed_out
=
result
[
0
]
im_info
=
data
[
0
][
1
]
im_info
=
np
.
array
(
data
[
0
][
'im_info'
])[
0
]
im_scale
=
im_info
[
2
]
outs
=
np
.
array
(
nmsed_out
)
draw_bounding_box_on_image
(
cfg
.
image_path
,
imgs
[
i
],
outs
,
im_scale
,
...
...
PaddleCV/rrpn/models/model_builder.py
浏览文件 @
6423cab6
...
...
@@ -35,8 +35,8 @@ class RRPN(object):
self
.
use_pyreader
=
use_pyreader
self
.
use_random
=
use_random
def
build_model
(
self
,
image_shape
):
self
.
build_input
(
image_shape
)
def
build_model
(
self
):
self
.
build_input
()
body_conv
=
self
.
add_conv_body_func
(
self
.
image
)
# RPN
self
.
rpn_heads
(
body_conv
)
...
...
@@ -61,56 +61,42 @@ class RRPN(object):
def
eval_bbox_out
(
self
):
return
self
.
pred_result
def
build_input
(
self
,
image_shape
):
if
self
.
use_pyreader
:
in_shapes
=
[[
-
1
]
+
image_shape
,
[
-
1
,
5
],
[
-
1
,
1
],
[
-
1
,
1
],
[
-
1
,
3
],
[
-
1
,
1
]]
lod_levels
=
[
0
,
1
,
1
,
1
,
0
,
0
]
dtypes
=
[
'float32'
,
'float32'
,
'int32'
,
'int32'
,
'float32'
,
'int64'
def
build_input
(
self
):
self
.
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
[
None
,
3
,
None
,
None
],
dtype
=
'float32'
)
if
self
.
mode
==
'train'
:
self
.
gt_box
=
fluid
.
data
(
name
=
'gt_box'
,
shape
=
[
None
,
5
],
dtype
=
'float32'
,
lod_level
=
1
)
else
:
self
.
gt_box
=
fluid
.
data
(
name
=
'gt_box'
,
shape
=
[
None
,
8
],
dtype
=
'float32'
,
lod_level
=
1
)
self
.
gt_label
=
fluid
.
data
(
name
=
'gt_class'
,
shape
=
[
None
,
1
],
dtype
=
'int32'
,
lod_level
=
1
)
self
.
is_crowd
=
fluid
.
data
(
name
=
'is_crowed'
,
shape
=
[
None
,
1
],
dtype
=
'int32'
,
lod_level
=
1
)
self
.
im_info
=
fluid
.
data
(
name
=
'im_info'
,
shape
=
[
None
,
3
],
dtype
=
'float32'
)
self
.
im_id
=
fluid
.
data
(
name
=
'im_id'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
self
.
difficult
=
fluid
.
data
(
name
=
'is_difficult'
,
shape
=
[
None
,
-
1
],
dtype
=
'float32'
,
lod_level
=
1
)
if
self
.
mode
==
'train'
:
feed_data
=
[
self
.
image
,
self
.
gt_box
,
self
.
gt_label
,
self
.
is_crowd
,
self
.
im_info
,
self
.
im_id
]
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
shapes
=
in_shapes
,
lod_levels
=
lod_levels
,
dtypes
=
dtypes
,
use_double_buffer
=
True
)
ins
=
fluid
.
layers
.
read_file
(
self
.
py_reader
)
self
.
image
=
ins
[
0
]
self
.
gt_box
=
ins
[
1
]
self
.
gt_label
=
ins
[
2
]
self
.
is_crowd
=
ins
[
3
]
self
.
im_info
=
ins
[
4
]
self
.
im_id
=
ins
[
5
]
elif
self
.
mode
==
'infer'
:
feed_data
=
[
self
.
image
,
self
.
im_info
]
else
:
self
.
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
self
.
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
self
.
gt_label
=
fluid
.
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
self
.
is_crowd
=
fluid
.
layers
.
data
(
name
=
'is_crowd'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
self
.
im_info
=
fluid
.
layers
.
data
(
name
=
'im_info'
,
shape
=
[
3
],
dtype
=
'float32'
)
self
.
im_id
=
fluid
.
layers
.
data
(
name
=
'im_id'
,
shape
=
[
1
],
dtype
=
'int64'
)
self
.
difficult
=
fluid
.
layers
.
data
(
name
=
'difficult'
,
shape
=
[
1
],
dtype
=
'float32'
,
lod_level
=
1
)
def
feeds
(
self
):
if
self
.
mode
==
'infer'
:
return
[
self
.
image
,
self
.
im_info
]
if
self
.
mode
==
'val'
:
return
[
feed_data
=
[
self
.
image
,
self
.
gt_box
,
self
.
gt_label
,
self
.
is_crowd
,
self
.
im_info
,
self
.
im_id
,
self
.
difficult
]
return
[
self
.
image
,
self
.
gt_box
,
self
.
gt_label
,
self
.
is_crowd
,
self
.
im_info
,
self
.
im_id
]
if
self
.
mode
==
'train'
:
self
.
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
feed_data
,
capacity
=
64
,
iterable
=
False
)
else
:
self
.
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
feed_data
,
capacity
=
64
,
iterable
=
True
)
def
eval_bbox
(
self
):
self
.
im_scale
=
fluid
.
layers
.
slice
(
...
...
@@ -151,23 +137,37 @@ class RRPN(object):
dimension
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
1
],
value
=
2
,
dtype
=
'int32'
)
cond
=
fluid
.
layers
.
less_than
(
dimension
,
res_dimension
)
res
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
,
10
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
False
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
cond
):
coordinate
=
fluid
.
layers
.
fill_constant
(
shape
=
[
9
],
value
=
0.0
,
dtype
=
'float32'
)
pred_class
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
i
+
1
,
dtype
=
'float32'
)
add_class
=
fluid
.
layers
.
concat
(
[
pred_class
,
coordinate
],
axis
=
0
)
normal_result
=
fluid
.
layers
.
elementwise_add
(
pred_result
,
add_class
)
fluid
.
layers
.
assign
(
normal_result
,
res
)
with
switch
.
default
():
normal_result
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
10
],
value
=-
1.0
,
dtype
=
'float32'
)
fluid
.
layers
.
assign
(
normal_result
,
res
)
def
case1
():
res
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
,
10
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
False
)
coordinate
=
fluid
.
layers
.
fill_constant
(
shape
=
[
9
],
value
=
0.0
,
dtype
=
'float32'
)
pred_class
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
value
=
i
+
1
,
dtype
=
'float32'
)
add_class
=
fluid
.
layers
.
concat
(
[
pred_class
,
coordinate
],
axis
=
0
)
normal_result
=
fluid
.
layers
.
elementwise_add
(
pred_result
,
add_class
)
fluid
.
layers
.
assign
(
normal_result
,
res
)
return
res
def
case2
():
res
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
,
10
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
False
)
normal_result
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
,
10
],
value
=-
1.0
,
dtype
=
'float32'
)
fluid
.
layers
.
assign
(
normal_result
,
res
)
return
res
res
=
fluid
.
layers
.
case
(
pred_fn_pairs
=
[(
cond
,
case1
)],
default
=
case2
)
results
.
append
(
res
)
if
len
(
results
)
==
1
:
self
.
pred_result
=
results
[
0
]
...
...
PaddleCV/rrpn/train.py
浏览文件 @
6423cab6
...
...
@@ -56,7 +56,7 @@ def get_device_num():
def
train
():
learning_rate
=
cfg
.
learning_rate
image_shape
=
[
3
,
cfg
.
TRAIN
.
max_size
,
cfg
.
TRAIN
.
max_size
]
#image_shape = [-1,
3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]
devices_num
=
get_device_num
()
total_batch_size
=
devices_num
*
cfg
.
TRAIN
.
im_per_batch
...
...
@@ -71,7 +71,7 @@ def train():
add_roi_box_head_func
=
resnet
.
ResNetC5
(),
use_pyreader
=
cfg
.
use_pyreader
,
use_random
=
use_random
)
model
.
build_model
(
image_shape
)
model
.
build_model
()
losses
,
keys
,
rpn_rois
=
model
.
loss
()
loss
=
losses
[
0
]
fetch_list
=
losses
...
...
@@ -132,16 +132,16 @@ def train():
if
num_trainers
>
1
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
)
py_reader
=
model
.
py_re
ader
py_reader
.
decorate_paddle_reader
(
train_reader
)
data_loader
=
model
.
data_lo
ader
data_loader
.
set_sample_list_generator
(
train_reader
,
places
=
place
)
else
:
if
num_trainers
>
1
:
shuffle
=
False
train_reader
=
reader
.
train
(
batch_size
=
total_batch_size
,
shuffle
=
shuffle
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
def
train_loop
_pyreader
():
py_re
ader
.
start
()
def
train_loop
():
data_lo
ader
.
start
()
train_stats
=
TrainingStats
(
cfg
.
log_window
,
keys
)
try
:
start_time
=
time
.
time
()
...
...
@@ -173,48 +173,9 @@ def train():
total_time
=
end_time
-
start_time
last_loss
=
np
.
array
(
outs
[
0
]).
mean
()
except
(
StopIteration
,
fluid
.
core
.
EOFException
):
py_reader
.
reset
()
def
train_loop
():
start_time
=
time
.
time
()
prev_start_time
=
start_time
start
=
start_time
train_stats
=
TrainingStats
(
cfg
.
log_window
,
keys
)
for
iter_id
,
data
in
enumerate
(
train_reader
()):
prev_start_time
=
start_time
start_time
=
time
.
time
()
if
data
[
0
][
1
].
shape
[
0
]
==
0
:
continue
outs
=
exe
.
run
(
compiled_train_prog
,
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
))
stats
=
{
k
:
np
.
array
(
v
).
mean
()
for
k
,
v
in
zip
(
keys
,
outs
[:
-
1
])}
train_stats
.
update
(
stats
)
logs
=
train_stats
.
log
()
if
iter_id
%
10
==
0
:
strs
=
'{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'
.
format
(
now_time
(),
iter_id
,
np
.
mean
(
outs
[
-
1
]),
logs
,
start_time
-
prev_start_time
)
print
(
strs
)
sys
.
stdout
.
flush
()
if
(
iter_id
+
1
)
%
cfg
.
TRAIN
.
snapshot_iter
==
0
and
iter_id
!=
0
:
save_name
=
"{}"
.
format
(
iter_id
+
1
)
checkpoint
.
save
(
exe
,
train_prog
,
os
.
path
.
join
(
cfg
.
model_save_dir
,
save_name
))
if
(
iter_id
+
1
)
==
cfg
.
max_iter
:
checkpoint
.
save
(
exe
,
train_prog
,
os
.
path
.
join
(
cfg
.
model_save_dir
,
"model_final"
))
break
end_time
=
time
.
time
()
total_time
=
end_time
-
start_time
last_loss
=
np
.
array
(
outs
[
0
]).
mean
()
data_loader
.
reset
()
if
cfg
.
use_pyreader
:
train_loop_pyreader
()
else
:
train_loop
()
train_loop
()
if
__name__
==
'__main__'
:
...
...
PaddleCV/rrpn/utility.py
浏览文件 @
6423cab6
...
...
@@ -133,7 +133,6 @@ def parse_args():
add_arg
(
'dataset'
,
str
,
'icdar2015'
,
"icdar2015, icdar2017."
)
add_arg
(
'class_num'
,
int
,
2
,
"Class number."
)
add_arg
(
'data_dir'
,
str
,
'dataset/icdar2015'
,
"The data root path."
)
add_arg
(
'use_pyreader'
,
bool
,
False
,
"Use pyreader."
)
add_arg
(
'use_profile'
,
bool
,
False
,
"Whether use profiler."
)
add_arg
(
'padding_minibatch'
,
bool
,
False
,
"If False, only resize image and not pad, image shape is different between"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录