Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
635ca16d
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
635ca16d
编写于
4月 18, 2018
作者:
W
whs
提交者:
GitHub
4月 18, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #852 from qingqing01/ssd_pl_exe
Add eval.py and fix bug for MobileNet-SSD.
上级
1a94d1ac
e32d3349
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
385 addition
and
228 deletion
+385
-228
fluid/image_classification/train.py
fluid/image_classification/train.py
+31
-35
fluid/object_detection/.gitignore
fluid/object_detection/.gitignore
+1
-0
fluid/object_detection/eval.py
fluid/object_detection/eval.py
+106
-0
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+173
-147
fluid/object_detection/train.py
fluid/object_detection/train.py
+74
-46
未找到文件。
fluid/image_classification/train.py
浏览文件 @
635ca16d
...
...
@@ -18,17 +18,19 @@ add_arg('batch_size', int, 256, "Minibatch size.")
add_arg
(
'num_layers'
,
int
,
50
,
"How many layers for SE-ResNeXt model."
)
add_arg
(
'with_mem_opt'
,
bool
,
True
,
"Whether to use memory optimization or not."
)
add_arg
(
'parallel_exe'
,
bool
,
True
,
"Whether to use ParallelExecutor to train or not."
)
def
train_paralle_do
(
args
,
learning_rate
,
batch_size
,
num_passes
,
init_model
=
None
,
model_save_dir
=
'model'
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
None
,
layers
=
50
):
# yapf: enable
def
train_parallel_do
(
args
,
learning_rate
,
batch_size
,
num_passes
,
init_model
=
None
,
model_save_dir
=
'model'
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
None
,
layers
=
50
):
class_dim
=
1000
image_shape
=
[
3
,
224
,
224
]
...
...
@@ -62,6 +64,8 @@ def train_paralle_do(args,
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
if
lr_strategy
is
None
:
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
...
...
@@ -76,12 +80,9 @@ def train_paralle_do(args,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
inference_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
opts
=
optimizer
.
minimize
(
avg_cost
)
if
args
.
with_mem_opt
:
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
fluid
.
memory_optimize
(
inference_program
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -154,6 +155,7 @@ def train_paralle_do(args,
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
def
train_parallel_exe
(
args
,
learning_rate
,
batch_size
,
...
...
@@ -195,7 +197,6 @@ def train_parallel_exe(args,
if
args
.
with_mem_opt
:
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
fluid
.
memory_optimize
(
test_program
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -210,9 +211,7 @@ def train_parallel_exe(args,
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
main_program
=
test_program
,
share_vars_from
=
train_exe
)
use_cuda
=
True
,
main_program
=
test_program
,
share_vars_from
=
train_exe
)
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
]
...
...
@@ -221,9 +220,8 @@ def train_parallel_exe(args,
test_info
=
[[],
[],
[]]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
train_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
loss
,
acc1
,
acc5
=
train_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
np
.
array
(
loss
))
...
...
@@ -245,9 +243,8 @@ def train_parallel_exe(args,
train_acc5
=
np
.
array
(
train_info
[
2
]).
mean
()
for
data
in
test_reader
():
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
test_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
loss
,
acc1
,
acc5
=
test_exe
.
run
(
fetch_list
,
feed_dict
=
feeder
.
feed
(
data
))
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
np
.
array
(
loss
))
...
...
@@ -281,8 +278,6 @@ def train_parallel_exe(args,
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
...
...
@@ -300,12 +295,13 @@ if __name__ == '__main__':
# layers: 50, 152
layers
=
args
.
num_layers
method
=
train_parallel_exe
if
args
.
parallel_exe
else
train_parallel_do
method
(
args
,
learning_rate
=
0.1
,
batch_size
=
batch_size
,
num_passes
=
120
,
init_model
=
None
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
lr_strategy
,
layers
=
layers
)
method
(
args
,
learning_rate
=
0.1
,
batch_size
=
batch_size
,
num_passes
=
120
,
init_model
=
None
,
parallel
=
True
,
use_nccl
=
True
,
lr_strategy
=
lr_strategy
,
layers
=
layers
)
fluid/object_detection/.gitignore
浏览文件 @
635ca16d
...
...
@@ -6,3 +6,4 @@ pretrained/ssd_mobilenet_v1_coco
pretrained/mobilenet_v1_imagenet.tar.gz
pretrained/mobilenet_v1_imagenet
log*
*.log
fluid/object_detection/eval.py
0 → 100644
浏览文件 @
635ca16d
import
os
import
time
import
numpy
as
np
import
argparse
import
functools
import
paddle
import
paddle.fluid
as
fluid
import
reader
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'dataset'
,
str
,
'pascalvoc'
,
"coco or pascalvoc."
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'data_dir'
,
str
,
''
,
"The data root path."
)
add_arg
(
'test_list'
,
str
,
''
,
"The testing data lists."
)
add_arg
(
'label_file'
,
str
,
''
,
"The label file, which save the real name and is only used for Pascal VOC."
)
add_arg
(
'model_dir'
,
str
,
''
,
"The model path."
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"11point or integral"
)
add_arg
(
'resize_h'
,
int
,
300
,
"The resized image height."
)
add_arg
(
'resize_w'
,
int
,
300
,
"The resized image width."
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value for B channel which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value for G channel which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value for R channel which will be subtracted"
)
#103.94
# yapf: enable
def
eval
(
args
,
data_args
,
test_list
,
batch_size
,
model_dir
=
None
):
image_shape
=
[
3
,
data_args
.
resize_h
,
data_args
.
resize_w
]
if
data_args
.
dataset
==
'coco'
:
num_classes
=
81
elif
data_args
.
dataset
==
'pascalvoc'
:
num_classes
=
21
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
gt_label
=
fluid
.
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
difficult
=
fluid
.
layers
.
data
(
name
=
'gt_difficult'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
locs
,
confs
,
box
,
box_var
=
mobile_net
(
num_classes
,
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
locs
,
confs
,
box
,
box_var
,
nms_threshold
=
0.45
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
with
fluid
.
program_guard
(
test_program
):
map_eval
=
fluid
.
evaluator
.
DetectionMAP
(
nmsed_out
,
gt_label
,
gt_box
,
difficult
,
num_classes
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
args
.
ap_version
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
if
model_dir
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
model_dir
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
model_dir
,
predicate
=
if_exist
)
test_reader
=
paddle
.
batch
(
reader
.
test
(
data_args
,
test_list
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
,
difficult
])
_
,
accum_map
=
map_eval
.
get_map_var
()
map_eval
.
reset
(
exe
)
for
idx
,
data
in
enumerate
(
test_reader
()):
test_map
=
exe
.
run
(
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
accum_map
])
if
idx
%
50
==
0
:
print
(
"Batch {0}, map {1}"
.
format
(
idx
,
test_map
[
0
]))
print
(
"Test model {0}, map {1}"
.
format
(
model_dir
,
test_map
[
0
]))
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
data_args
=
reader
.
Settings
(
dataset
=
args
.
dataset
,
data_dir
=
args
.
data_dir
,
label_file
=
args
.
label_file
,
resize_h
=
args
.
resize_h
,
resize_w
=
args
.
resize_w
,
mean_value
=
[
args
.
mean_value_B
,
args
.
mean_value_G
,
args
.
mean_value_R
])
eval
(
args
,
test_list
=
args
.
test_list
,
data_args
=
data_args
,
batch_size
=
args
.
batch_size
,
model_dir
=
args
.
model_dir
)
fluid/object_detection/reader.py
浏览文件 @
635ca16d
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
image_util
from
paddle.utils.image_util
import
*
import
random
...
...
@@ -23,12 +22,19 @@ import xml.etree.ElementTree
import
os
import
time
import
copy
import
functools
class
Settings
(
object
):
def
__init__
(
self
,
dataset
,
toy
,
data_dir
,
label_file
,
resize_h
,
resize_w
,
mean_value
,
apply_distort
,
apply_expand
):
def
__init__
(
self
,
dataset
=
None
,
data_dir
=
None
,
label_file
=
None
,
resize_h
=
300
,
resize_w
=
300
,
mean_value
=
[
127.5
,
127.5
,
127.5
],
apply_distort
=
True
,
apply_expand
=
True
,
toy
=
0
):
self
.
_dataset
=
dataset
self
.
_toy
=
toy
self
.
_data_dir
=
data_dir
...
...
@@ -38,8 +44,6 @@ class Settings(object):
for
line
in
open
(
label_fpath
):
self
.
_label_list
.
append
(
line
.
strip
())
self
.
_thread
=
2
self
.
_buf_size
=
2048
self
.
_apply_distort
=
apply_distort
self
.
_apply_expand
=
apply_expand
self
.
_resize_height
=
resize_h
...
...
@@ -98,15 +102,94 @@ class Settings(object):
return
self
.
_img_mean
def
process_image
(
sample
,
settings
,
mode
):
img
=
Image
.
open
(
sample
[
0
])
if
img
.
mode
==
'L'
:
img
=
img
.
convert
(
'RGB'
)
def
preprocess
(
img
,
bbox_labels
,
mode
,
settings
):
img_width
,
img_height
=
img
.
size
sampled_labels
=
bbox_labels
if
mode
==
'train'
:
if
settings
.
_apply_distort
:
img
=
image_util
.
distort_image
(
img
,
settings
)
if
settings
.
_apply_expand
:
img
,
bbox_labels
,
img_width
,
img_height
=
image_util
.
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
)
# sampling
batch_sampler
=
[]
# hard-code here
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
1
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.1
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.3
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.5
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.7
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.9
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.0
,
1.0
))
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
)
img
=
np
.
array
(
img
)
if
len
(
sampled_bbox
)
>
0
:
idx
=
int
(
random
.
uniform
(
0
,
len
(
sampled_bbox
)))
img
,
sampled_labels
=
image_util
.
crop_image
(
img
,
bbox_labels
,
sampled_bbox
[
idx
],
img_width
,
img_height
)
img
=
Image
.
fromarray
(
img
)
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
if
mode
==
'train'
:
mirror
=
int
(
random
.
uniform
(
0
,
2
))
if
mirror
==
1
:
img
=
img
[:,
::
-
1
,
:]
for
i
in
xrange
(
len
(
sampled_labels
)):
tmp
=
sampled_labels
[
i
][
1
]
sampled_labels
[
i
][
1
]
=
1
-
sampled_labels
[
i
][
3
]
sampled_labels
[
i
][
3
]
=
1
-
tmp
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
*
0.007843
return
img
,
sampled_labels
def
coco
(
settings
,
file_list
,
mode
,
shuffle
):
# cocoapi
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
if
mode
==
'train'
or
mode
==
'test'
:
if
settings
.
dataset
==
'coco'
:
# layout: category_id | xmin | ymin | xmax | ymax | iscrowd | origin_coco_bbox | segmentation | area | image_id | annotation_id
coco
=
COCO
(
file_list
)
image_ids
=
coco
.
getImgIds
()
images
=
coco
.
loadImgs
(
image_ids
)
category_ids
=
coco
.
getCatIds
()
category_names
=
[
item
[
'name'
]
for
item
in
coco
.
loadCats
(
category_ids
)]
if
not
settings
.
toy
==
0
:
images
=
images
[:
settings
.
toy
]
if
len
(
images
)
>
settings
.
toy
else
images
print
(
"{} on {} with {} images"
.
format
(
mode
,
settings
.
dataset
,
len
(
images
)))
def
reader
():
if
mode
==
'train'
and
shuffle
:
random
.
shuffle
(
images
)
for
image
in
images
:
image_name
=
image
[
'file_name'
]
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_name
)
im
=
Image
.
open
(
image_path
)
if
im
.
mode
==
'L'
:
im
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
im
.
size
# layout: category_id | xmin | ymin | xmax | ymax | iscrowd |
# origin_coco_bbox | segmentation | area | image_id | annotation_id
bbox_labels
=
[]
annIds
=
coco
.
getAnnIds
(
imgIds
=
image
[
'id'
])
anns
=
coco
.
loadAnns
(
annIds
)
...
...
@@ -119,21 +202,47 @@ def process_image(sample, settings, mode):
xmin
,
ymin
,
w
,
h
=
bbox
xmax
=
xmin
+
w
ymax
=
ymin
+
h
bbox_sample
.
append
(
float
(
xmin
)
/
im
g
_width
)
bbox_sample
.
append
(
float
(
ymin
)
/
im
g
_height
)
bbox_sample
.
append
(
float
(
xmax
)
/
im
g
_width
)
bbox_sample
.
append
(
float
(
ymax
)
/
im
g
_height
)
bbox_sample
.
append
(
float
(
xmin
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymin
)
/
im_height
)
bbox_sample
.
append
(
float
(
xmax
)
/
im_width
)
bbox_sample
.
append
(
float
(
ymax
)
/
im_height
)
bbox_sample
.
append
(
float
(
ann
[
'iscrowd'
]))
#bbox_sample.append(ann['bbox'])
#bbox_sample.append(ann['segmentation'])
#bbox_sample.append(ann['area'])
#bbox_sample.append(ann['image_id'])
#bbox_sample.append(ann['id'])
bbox_labels
.
append
(
bbox_sample
)
elif
settings
.
dataset
==
'pascalvoc'
:
im
,
sample_labels
=
preprocess
(
im
,
bbox_labels
,
mode
,
settings
)
sample_labels
=
np
.
array
(
sample_labels
)
if
len
(
sample_labels
)
==
0
:
continue
im
=
im
.
astype
(
'float32'
)
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
sample_labels
[:,
0
].
astype
(
'int32'
)
difficults
=
sample_labels
[:,
-
1
].
astype
(
'int32'
)
yield
im
,
boxes
,
lbls
,
difficults
return
reader
def
pascalvoc
(
settings
,
file_list
,
mode
,
shuffle
):
flist
=
open
(
file_list
)
images
=
[
line
.
strip
()
for
line
in
flist
]
if
not
settings
.
toy
==
0
:
images
=
images
[:
settings
.
toy
]
if
len
(
images
)
>
settings
.
toy
else
images
print
(
"{} on {} with {} images"
.
format
(
mode
,
settings
.
dataset
,
len
(
images
)))
def
reader
():
if
mode
==
'train'
and
shuffle
:
random
.
shuffle
(
images
)
for
image
in
images
:
image_path
,
label_path
=
image
.
split
()
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_path
)
label_path
=
os
.
path
.
join
(
settings
.
data_dir
,
label_path
)
im
=
Image
.
open
(
image_path
)
if
im
.
mode
==
'L'
:
im
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
im
.
size
# layout: label | xmin | ymin | xmax | ymax | difficult
bbox_labels
=
[]
root
=
xml
.
etree
.
ElementTree
.
parse
(
sample
[
1
]
).
getroot
()
root
=
xml
.
etree
.
ElementTree
.
parse
(
label_path
).
getroot
()
for
object
in
root
.
findall
(
'object'
):
bbox_sample
=
[]
# start from 1
...
...
@@ -141,124 +250,22 @@ def process_image(sample, settings, mode):
float
(
settings
.
label_list
.
index
(
object
.
find
(
'name'
).
text
)))
bbox
=
object
.
find
(
'bndbox'
)
difficult
=
float
(
object
.
find
(
'difficult'
).
text
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmin'
).
text
)
/
im
g
_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymin'
).
text
)
/
im
g
_height
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmax'
).
text
)
/
im
g
_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymax'
).
text
)
/
im
g
_height
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmin'
).
text
)
/
im_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymin'
).
text
)
/
im_height
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmax'
).
text
)
/
im_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymax'
).
text
)
/
im_height
)
bbox_sample
.
append
(
difficult
)
bbox_labels
.
append
(
bbox_sample
)
im
,
sample_labels
=
preprocess
(
im
,
bbox_labels
,
mode
,
settings
)
sample_labels
=
np
.
array
(
sample_labels
)
if
len
(
sample_labels
)
==
0
:
continue
im
=
im
.
astype
(
'float32'
)
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
sample_labels
[:,
0
].
astype
(
'int32'
)
difficults
=
sample_labels
[:,
-
1
].
astype
(
'int32'
)
yield
im
,
boxes
,
lbls
,
difficults
sample_labels
=
bbox_labels
if
mode
==
'train'
:
if
settings
.
_apply_distort
:
img
=
image_util
.
distort_image
(
img
,
settings
)
if
settings
.
_apply_expand
:
img
,
bbox_labels
,
img_width
,
img_height
=
image_util
.
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
)
batch_sampler
=
[]
# hard-code here
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
1
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.1
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.3
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.5
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.7
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.9
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.0
,
1.0
))
""" random crop """
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
)
img
=
np
.
array
(
img
)
if
len
(
sampled_bbox
)
>
0
:
idx
=
int
(
random
.
uniform
(
0
,
len
(
sampled_bbox
)))
img
,
sample_labels
=
image_util
.
crop_image
(
img
,
bbox_labels
,
sampled_bbox
[
idx
],
img_width
,
img_height
)
img
=
Image
.
fromarray
(
img
)
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
if
mode
==
'train'
:
mirror
=
int
(
random
.
uniform
(
0
,
2
))
if
mirror
==
1
:
img
=
img
[:,
::
-
1
,
:]
for
i
in
xrange
(
len
(
sample_labels
)):
tmp
=
sample_labels
[
i
][
1
]
sample_labels
[
i
][
1
]
=
1
-
sample_labels
[
i
][
3
]
sample_labels
[
i
][
3
]
=
1
-
tmp
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
.
flatten
()
img
=
img
*
0.007843
sample_labels
=
np
.
array
(
sample_labels
)
if
mode
==
'train'
or
mode
==
'test'
:
if
len
(
sample_labels
)
!=
0
:
return
img
.
astype
(
'float32'
),
sample_labels
[:,
1
:
5
],
sample_labels
[:,
0
].
astype
(
'int32'
),
sample_labels
[:,
-
1
].
astype
(
'int32'
)
elif
mode
==
'infer'
:
return
img
.
astype
(
'float32'
)
def
_reader_creator
(
settings
,
file_list
,
mode
,
shuffle
):
def
reader
():
if
settings
.
dataset
==
'coco'
:
# cocoapi
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
coco
=
COCO
(
file_list
)
image_ids
=
coco
.
getImgIds
()
images
=
coco
.
loadImgs
(
image_ids
)
category_ids
=
coco
.
getCatIds
()
category_names
=
[
item
[
'name'
]
for
item
in
coco
.
loadCats
(
category_ids
)
]
elif
settings
.
dataset
==
'pascalvoc'
:
flist
=
open
(
file_list
)
images
=
[
line
.
strip
()
for
line
in
flist
]
if
not
settings
.
toy
==
0
:
images
=
images
[:
settings
.
toy
]
if
len
(
images
)
>
settings
.
toy
else
images
print
(
"{} on {} with {} images"
.
format
(
mode
,
settings
.
dataset
,
len
(
images
)))
if
shuffle
:
random
.
shuffle
(
images
)
for
image
in
images
:
if
settings
.
dataset
==
'coco'
:
image_name
=
image
[
'file_name'
]
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_name
)
yield
[
image_path
]
elif
settings
.
dataset
==
'pascalvoc'
:
if
mode
==
'train'
or
mode
==
'test'
:
image_path
,
label_path
=
image
.
split
()
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_path
)
label_path
=
os
.
path
.
join
(
settings
.
data_dir
,
label_path
)
yield
image_path
,
label_path
elif
mode
==
'infer'
:
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image
)
yield
[
image_path
]
mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
,
settings
=
settings
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
settings
.
_thread
,
settings
.
_buf_size
)
return
reader
def
draw_bounding_box_on_image
(
image
,
...
...
@@ -301,9 +308,9 @@ def train(settings, file_list, shuffle=True):
elif
'2017'
in
file_list
:
sub_dir
=
"train2017"
train_settings
.
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
return
_reader_creator
(
train_settings
,
file_list
,
'train'
,
shuffle
)
el
if
settings
.
dataset
==
'pascalvoc'
:
return
_reader_creator
(
settings
,
file_list
,
'train'
,
shuffle
)
return
coco
(
train_settings
,
file_list
,
'train'
,
shuffle
)
el
se
:
return
pascalvoc
(
settings
,
file_list
,
'train'
,
shuffle
)
def
test
(
settings
,
file_list
):
...
...
@@ -315,10 +322,29 @@ def test(settings, file_list):
elif
'2017'
in
file_list
:
sub_dir
=
"val2017"
test_settings
.
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
return
_reader_creator
(
test_settings
,
file_list
,
'test'
,
False
)
el
if
settings
.
dataset
==
'pascalvoc'
:
return
_reader_creator
(
settings
,
file_list
,
'test'
,
False
)
return
coco
(
test_settings
,
file_list
,
'test'
,
False
)
el
se
:
return
pascalvoc
(
settings
,
file_list
,
'test'
,
False
)
def
infer
(
settings
,
file_list
):
return
_reader_creator
(
settings
,
file_list
,
'infer'
,
False
)
def
infer
(
settings
,
image_path
):
def
reader
():
im
=
Image
.
open
(
image_path
)
if
im
.
mode
==
'L'
:
im
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
im
.
size
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
*
0.007843
yield
img
return
reader
fluid/object_detection/train.py
浏览文件 @
635ca16d
import
paddle
import
paddle.fluid
as
fluid
import
reader
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
import
os
import
time
import
numpy
as
np
import
argparse
import
functools
import
shutil
import
paddle
import
paddle.fluid
as
fluid
import
reader
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'batch_size'
,
int
,
32
,
"Minibatch size."
)
add_arg
(
'num_passes'
,
int
,
25
,
"Epoch number."
)
add_arg
(
'num_passes'
,
int
,
120
,
"Epoch number."
)
add_arg
(
'parallel'
,
bool
,
True
,
"Whether use parallel training."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether
use GPU
."
)
add_arg
(
'use_nccl'
,
bool
,
False
,
"Whether
use NCCL
."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether
to use GPU or not
."
)
add_arg
(
'use_nccl'
,
bool
,
False
,
"Whether
to use NCCL or not
."
)
add_arg
(
'dataset'
,
str
,
'pascalvoc'
,
"coco or pascalvoc."
)
add_arg
(
'model_save_dir'
,
str
,
'model'
,
"The path to save model."
)
add_arg
(
'pretrained_model'
,
str
,
'pretrained/ssd_mobilenet_v1_coco/'
,
"The init model path."
)
add_arg
(
'apply_distort'
,
bool
,
True
,
"Whether apply distort"
)
add_arg
(
'apply_expand'
,
bool
,
False
,
"Whether appley expand"
)
add_arg
(
'resize_h'
,
int
,
300
,
"resize image size"
)
add_arg
(
'resize_w'
,
int
,
300
,
"resize image size"
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value which will be subtracted"
)
#103.94
add_arg
(
'apply_distort'
,
bool
,
True
,
"Whether apply distort"
)
add_arg
(
'apply_expand'
,
bool
,
True
,
"Whether appley expand"
)
add_arg
(
'ap_version'
,
str
,
'11point'
,
"11point or integral"
)
add_arg
(
'resize_h'
,
int
,
300
,
"The resized image height."
)
add_arg
(
'resize_w'
,
int
,
300
,
"The resized image width."
)
add_arg
(
'mean_value_B'
,
float
,
127.5
,
"mean value for B channel which will be subtracted"
)
#123.68
add_arg
(
'mean_value_G'
,
float
,
127.5
,
"mean value for G channel which will be subtracted"
)
#116.78
add_arg
(
'mean_value_R'
,
float
,
127.5
,
"mean value for R channel which will be subtracted"
)
#103.94
add_arg
(
'is_toy'
,
int
,
0
,
"Toy for quick debug, 0 means using all data, while n means using only n sample"
)
# yapf:
dis
able
# yapf:
en
able
def
parallel_do
(
args
,
...
...
@@ -93,7 +96,7 @@ def parallel_do(args,
num_classes
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
'integral'
)
ap_version
=
args
.
ap_version
)
if
data_args
.
dataset
==
'coco'
:
# learning rate decay in 12, 19 pass, respectively
...
...
@@ -115,8 +118,10 @@ def parallel_do(args,
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
train_reader
=
paddle
.
batch
(
...
...
@@ -130,7 +135,7 @@ def parallel_do(args,
_
,
accum_map
=
map_eval
.
get_map_var
()
map_eval
.
reset
(
exe
)
test_map
=
None
for
_
,
data
in
enumerate
(
test_reader
()
):
for
data
in
test_reader
(
):
test_map
=
exe
.
run
(
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
accum_map
])
...
...
@@ -173,6 +178,9 @@ def parallel_exe(args,
elif
data_args
.
dataset
==
'pascalvoc'
:
num_classes
=
21
devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
or
""
devices_num
=
len
(
devices
.
split
(
","
))
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
...
...
@@ -184,8 +192,7 @@ def parallel_exe(args,
locs
,
confs
,
box
,
box_var
=
mobile_net
(
num_classes
,
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
locs
,
confs
,
box
,
box_var
,
nms_threshold
=
0.45
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
...
...
@@ -198,17 +205,23 @@ def parallel_exe(args,
num_classes
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
'integral'
)
ap_version
=
args
.
ap_version
)
if
data_args
.
dataset
==
'coco'
:
# learning rate decay in 12, 19 pass, respectively
if
'2014'
in
train_file_list
:
boundaries
=
[
82783
/
batch_size
*
12
,
82783
/
batch_size
*
19
]
epocs
=
82783
/
batch_size
boundaries
=
[
epocs
*
12
,
epocs
*
19
]
elif
'2017'
in
train_file_list
:
boundaries
=
[
118287
/
batch_size
*
12
,
118287
/
batch_size
*
19
]
epocs
=
118287
/
batch_size
boundaries
=
[
epcos
*
12
,
epocs
*
19
]
elif
data_args
.
dataset
==
'pascalvoc'
:
boundaries
=
[
40000
,
60000
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
]
epocs
=
19200
/
batch_size
boundaries
=
[
epocs
*
40
,
epocs
*
60
,
epocs
*
80
,
epocs
*
100
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
,
learning_rate
*
0.1
,
learning_rate
*
0.01
]
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
,
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
0.00005
),
)
...
...
@@ -220,12 +233,14 @@ def parallel_exe(args,
exe
.
run
(
fluid
.
default_startup_program
())
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_gpu
,
loss_name
=
loss
.
name
)
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
args
.
use_gpu
,
loss_name
=
loss
.
name
)
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
...
...
@@ -234,36 +249,48 @@ def parallel_exe(args,
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
,
difficult
])
def
test
(
pass_id
):
def
save_model
(
postfix
):
model_path
=
os
.
path
.
join
(
model_save_dir
,
postfix
)
if
os
.
path
.
isdir
(
model_path
):
shutil
.
rmtree
(
model_path
)
print
'save models to %s'
%
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
best_map
=
0.
def
test
(
pass_id
,
best_map
):
_
,
accum_map
=
map_eval
.
get_map_var
()
map_eval
.
reset
(
exe
)
test_map
=
None
for
_
,
data
in
enumerate
(
test_reader
()
):
for
data
in
test_reader
(
):
test_map
=
exe
.
run
(
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
accum_map
])
if
test_map
[
0
]
>
best_map
:
best_map
=
test_map
[
0
]
save_model
(
'best_model'
)
print
(
"Test {0}, map {1}"
.
format
(
pass_id
,
test_map
[
0
]))
for
pass_id
in
range
(
num_passes
):
start_time
=
time
.
time
()
prev_start_time
=
start_time
end_time
=
0
test
(
pass_id
)
for
batch_id
,
data
in
enumerate
(
train_reader
()):
prev_start_time
=
start_time
start_time
=
time
.
time
()
if
len
(
data
)
<
devices_num
:
continue
loss_v
,
=
train_exe
.
run
(
fetch_list
=
[
loss
.
name
],
feed_dict
=
feeder
.
feed
(
data
))
feed_dict
=
feeder
.
feed
(
data
))
end_time
=
time
.
time
()
loss_v
=
np
.
mean
(
np
.
array
(
loss_v
))
if
batch_id
%
20
==
0
:
print
(
"Pass {0}, batch {1}, loss {2}, time {3}"
.
format
(
pass_id
,
batch_id
,
loss_v
,
start_time
-
prev_start_time
))
test
(
pass_id
,
best_map
)
if
pass_id
%
10
==
0
or
pass_id
==
num_passes
-
1
:
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
pass_id
))
print
'save models to %s'
%
(
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
save_model
(
str
(
pass_id
))
print
(
"Best test map {0}"
.
format
(
best_map
)
)
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
...
...
@@ -282,22 +309,23 @@ if __name__ == '__main__':
data_args
=
reader
.
Settings
(
dataset
=
args
.
dataset
,
toy
=
args
.
is_toy
,
data_dir
=
data_dir
,
label_file
=
label_file
,
apply_distort
=
args
.
apply_distort
,
apply_expand
=
args
.
apply_expand
,
resize_h
=
args
.
resize_h
,
resize_w
=
args
.
resize_w
,
mean_value
=
[
args
.
mean_value_B
,
args
.
mean_value_G
,
args
.
mean_value_R
])
mean_value
=
[
args
.
mean_value_B
,
args
.
mean_value_G
,
args
.
mean_value_R
],
toy
=
args
.
is_toy
)
#method = parallel_do
method
=
parallel_exe
method
(
args
,
train_file_list
=
train_file_list
,
val_file_list
=
val_file_list
,
data_args
=
data_args
,
learning_rate
=
args
.
learning_rate
,
batch_size
=
args
.
batch_size
,
num_passes
=
args
.
num_passes
,
model_save_dir
=
model_save_dir
,
pretrained_model
=
args
.
pretrained_model
)
method
(
args
,
train_file_list
=
train_file_list
,
val_file_list
=
val_file_list
,
data_args
=
data_args
,
learning_rate
=
args
.
learning_rate
,
batch_size
=
args
.
batch_size
,
num_passes
=
args
.
num_passes
,
model_save_dir
=
model_save_dir
,
pretrained_model
=
args
.
pretrained_model
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录